Patents by Inventor Georgios C. Dogiamis

Georgios C. Dogiamis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11335651
    Abstract: Embodiments of the invention include a microelectronic device that includes a first silicon based substrate having compound semiconductor components. The microelectronic device also includes a second substrate coupled to the first substrate. The second substrate includes an antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: May 17, 2022
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Georgios C. Dogiamis, Vijay K. Nair, Javier A. Falcon, Shawna M. Liff, Yoshihiro Tomita
  • Patent number: 11283427
    Abstract: Hybrid filters and more particularly filters having acoustic wave resonators (AWRs) and lumped component (LC) resonators and packages therefor are described. In an example, a packaged filter includes a package substrate, the package substrate having a first side and a second side, the second side opposite the first side. A first acoustic wave resonator (AWR) device is coupled to the package substrate, the first AWR device comprising a resonator. A plurality of inductors is in the package substrate.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: March 22, 2022
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Feras Eid, Georgios C. Dogiamis, Vijay K. Nair, Johanna M. Swan
  • Patent number: 11282800
    Abstract: An inductor in a device package and a method of forming the inductor in the device package are described. The inductor includes a first conductive layer disposed on a substrate. The inductor also has one or more hybrid magnetic additively manufactured (HMAM) layers disposed over and around the first conductive layer to form one or more via openings over the first conductive layer. The inductor further includes one or more vias disposed into the one or more via openings, wherein the one or more vias are only disposed on the portions of the exposed first conductive layer. The inductor has a dielectric layer disposed over and around the one or more vias, the HMAM layers, and the substrate. The inductor also has a second conductive layer disposed over the one or more vias and the dielectric layer.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: March 22, 2022
    Assignee: Intel Corporation
    Inventors: Henning Braunisch, Feras Eid, Georgios C. Dogiamis
  • Patent number: 11221354
    Abstract: Embodiments of the invention include a resonant sensing system comprising driving circuitry to generate a drive signal during excitation time periods, a first switch coupled to the driving circuitry, and a sensing device coupled to the driving circuitry via the first switch during the excitation time periods. The sensing device includes beams to receive the drive signal during a first excitation time period that causes the beams to mechanically oscillate and generate a first induced electromotive force (emf) in response to the drive signal. The first switch decouples the sensing device and the driving circuitry during measurement time periods for measurement of the induced emf.
    Type: Grant
    Filed: July 1, 2016
    Date of Patent: January 11, 2022
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Sasha N. Oster, Feras Eid, Ian A. Young
  • Patent number: 11223524
    Abstract: Embodiments of the invention include a physiological sensor system. According to an embodiment the sensor system may include a package substrate, a plurality of sensors formed on the substrate, a second electrical component, and an encryption bank formed along a data transmission path between the plurality of sensors and the second electrical component. In an embodiment the encryption bank may include a plurality of portions that each have one or more switches integrated into the package substrate. In an embodiment each sensor transmits data to the second electrical component along different portions of the encryption bank. In some embodiments, the switches may be piezoelectrically actuated. In other embodiments the switches may be actuated by thermal expansion. Additional embodiments may include tri- or bi-stable mechanical switches.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: January 11, 2022
    Assignee: Intel Corporation
    Inventors: Shawna M. Liff, Adel A. Elsherbini, Sasha N. Oster, Feras Eid, Georgios C. Dogiamis, Thomas L. Sounart, Johanna M. Swan
  • Patent number: 11206008
    Abstract: Embodiments of the invention include an acoustic wave resonator (AWR) module. In an embodiment, the AWR module may include a first AWR substrate and a second AWR substrate affixed to the first AWR substrate. In an embodiment, the first AWR substrate and the second AWR substrate define a hermetically sealed cavity. A first AWR device may be positioned in the cavity and formed on the first AWR substrate, and a second AWR device may be positioned in the cavity and formed on the second AWR substrate. In an embodiment, a center frequency of the first AWR device is different than a center frequency of the second AWR device. In additional embodiment of the invention, the AWR module may be integrated into a hybrid filter. The hybrid filter may include an AWR module and other RF passive devices embedded in a packaging substrate.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: December 21, 2021
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Telesphor Kamgaing, Feras Eid, Vijay K. Nair, Johanna M. Swan
  • Publication number: 20210376437
    Abstract: A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
    Type: Application
    Filed: August 16, 2021
    Publication date: December 2, 2021
    Inventors: Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Sasha N. Oster, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Publication number: 20210265732
    Abstract: Embodiments of the invention include a microelectronic device that includes a first substrate having radio frequency (RF) components and a second substrate that is coupled to the first substrate. The second substrate includes a first conductive layer of an antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher. A mold material is disposed on the first and second substrates. The mold material includes a first region that is positioned between the first conductive layer and a second conductive layer of the antenna unit with the mold material being a dielectric material to capacitively couple the first and second conductive layers of the antenna unit.
    Type: Application
    Filed: May 11, 2021
    Publication date: August 26, 2021
    Inventors: Feras EID, Sasha N. OSTER, Telesphor KAMGAING, Georgios C. DOGIAMIS, Aleksandar ALEKSOV
  • Patent number: 11095012
    Abstract: A method of forming a waveguide comprises forming an elongate waveguide core including a dielectric material; and arranging a conductive sheet around an outside surface of the dielectric core to produce a conductive layer around the waveguide core.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: August 17, 2021
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Georgios C. Dogiamis, Telesphor Kamgaing, Sasha N. Oster, Adel A. Elsherbini, Shawna M. Liff, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Patent number: 11056765
    Abstract: Embodiments of the invention include a microelectronic device that includes a first substrate having radio frequency (RF) circuits and a second substrate coupled to the first substrate. The second substrate includes a first section and a second section with the second substrate being foldable in order to obtain a desired orientation of an antenna unit of the second section for transmitting and receiving communications at a frequency of approximately 4 GHz or higher.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: July 6, 2021
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Georgios C. Dogiamis, Sasha N. Oster
  • Patent number: 11050155
    Abstract: Embodiments of the invention include a microelectronic device that includes a first substrate having radio frequency (RF) components and a second substrate that is coupled to the first substrate. The second substrate includes a first conductive layer of an antenna unit for transmitting and receiving communications at a frequency of approximately 4 GHz or higher. A mold material is disposed on the first and second substrates. The mold material includes a first region that is positioned between the first conductive layer and a second conductive layer of the antenna unit with the mold material being a dielectric material to capacitively couple the first and second conductive layers of the antenna unit.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: June 29, 2021
    Assignee: Intel Corporation
    Inventors: Feras Eid, Sasha N. Oster, Telesphor Kamgaing, Georgios C. Dogiamis, Aleksandar Aleksov
  • Publication number: 20210194966
    Abstract: Embodiments include a sensor node, an active sensor node, and a vehicle with a communication system that includes sensor nodes. The sensor node include a package substrate, a diplexer/combiner block on the package substrate, a transceiver communicatively coupled to the diplexer/combiner block, and a first mm-wave launcher coupled to the diplexer/combiner block. The sensor node may have a sensor communicatively coupled to the transceiver, the sensor is communicatively coupled to the transceiver by an electrical cable and located on the package substrate. The sensor node may include that the sensor operates at a frequency band for communicating with an electronic control unit (ECU) communicatively coupled to the sensor node. The sensor node may have a filter communicatively coupled to the diplexer/combiner block, the transceiver communicatively coupled to the filter, the filter substantially removes frequencies from RF signals other than the frequency band of the sensor.
    Type: Application
    Filed: December 30, 2017
    Publication date: June 24, 2021
    Inventors: Georgios C. DOGIAMIS, Sasha N. OSTER, Adel A. ELSHERBINI, Erich N. EWY, Johanna M. SWAN, Telesphor KAMGAING
  • Patent number: 11037892
    Abstract: Waveguides disposed in either an interposer layer or directly in the semiconductor package substrate may be used to transfer signals between semiconductor dies coupled to the semiconductor package. For example, inter-semiconductor die communications using mm-wave carrier signals launched into waveguides specifically tuned to optimize transmission parameters of such signals. The use of such high frequencies beneficially provides for reliable transmission of modulated high data rate signals with lower losses than conductive traces and less cross-talk. The use of mm-wave waveguides provides higher data transfer rates per bump for bump-limited dies as well as beneficially providing improved signal integrity even at such higher data transfer rates. Such mm-wave waveguides may be built directly into semiconductor package layers or may be incorporated into one or more interposed layers that are physically and communicably coupled between the semiconductor dies and the semiconductor package substrate.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: June 15, 2021
    Assignee: Intel Corporation
    Inventors: Vijay K. Nair, Sasha N. Oster, Johanna M. Swan, Telesphor Kamgaing, Georgios C. Dogiamis, Adel A. Elsherbini
  • Patent number: 11031666
    Abstract: An apparatus comprises a waveguide including: an elongate waveguide core including a dielectric material, wherein the waveguide core includes at least one space arranged lengthwise along the waveguide core that is void of the dielectric material; and a conductive layer arranged around the waveguide core.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 8, 2021
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Sasha N. Oster, Georgios C. Dogiamis, Telesphor Kamgaing, Shawna M. Liff, Aleksandar Aleksov, Johanna M. Swan, Brandon M. Rawlings, Richard J. Dischler
  • Patent number: 11024933
    Abstract: A method of making a waveguide, comprises: extruding a first dielectric material as a waveguide core of the waveguide, wherein the waveguide core is elongate; and coextruding an outer layer with the waveguide core, wherein the outer layer is arranged around the waveguide core.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 1, 2021
    Assignee: Intel Corporation
    Inventors: Brandon M. Rawlings, Shawna M. Liff, Sasha N. Oster, Georgios C. Dogiamis, Telesphor Kamgaing, Adel A. Elsherbini, Aleksandar Aleksov, Johanna M. Swan, Richard J. Dischler
  • Patent number: 10992021
    Abstract: Embodiments of the invention may include packaged device that may be used for reducing cross-talk between neighboring antennas. In an embodiment the packaged device may comprise a first package substrate that is mounted to a printed circuit board (PCB). A plurality of first antennas may also be formed on the first package. Embodiments may also include a second package substrate that is mounted to the PCB, and the second package substrate may include a second plurality of antennas. According to an embodiment, the cross-talk between the first and second plurality of antennas is reduced by forming a guiding structure between the first and second packages. In an embodiment the guiding structure comprises a plurality of fins that define a plurality of pathways between the first antennas and the second antennas.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: April 27, 2021
    Assignee: Intel Corporation
    Inventors: Adel A. Elsherbini, Telesphor Kamgaing, Sasha N. Oster, Georgios C. Dogiamis
  • Patent number: 10976822
    Abstract: In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing increased human perception of haptic feedback systems. For instance, there is disclosed in accordance with one embodiment there is wearable device, having therein: a wearable device case; a plurality of actuators within the wearable device case, each of which to vibrate independently or in combination; in which one surface of each of the plurality of actuators is exposed at a surface of the wearable device case; an elastomer surrounding the sides of each of the plurality of actuators within the wearable device case to hold the actuators in position within the wearable device case; and electrical interconnects from each of the plurality of actuators to internal semiconductor components of the wearable device. Other related embodiments are disclosed.
    Type: Grant
    Filed: October 1, 2016
    Date of Patent: April 13, 2021
    Assignee: Intel Corporation
    Inventors: Georgios C. Dogiamis, Aleksandar Aleksov, Johanna M. Swan
  • Patent number: 10964178
    Abstract: In accordance with disclosed embodiments, there are provided systems, methods, and apparatuses for implementing increased human perception of haptic feedback systems. For instance, there is disclosed in accordance with one embodiment there is wearable device, having therein: a wearable device case; a plurality of actuators within the wearable device case, each of which to vibrate independently or in combination; one or more pins attached to each of the plurality of actuators, one end of each of the plurality of pins affixed to the actuators extrudes beyond surface of the wearable device case and is exposed outside of the wearable device case; electrical interconnects from each of the plurality of actuators to internal semiconductor components of the wearable device. Other related embodiments are disclosed.
    Type: Grant
    Filed: October 1, 2016
    Date of Patent: March 30, 2021
    Assignee: Intel Corporation
    Inventors: Aleksandar Aleksov, Georgios C. Dogiamis, Johanna M. Swan
  • Patent number: 10950919
    Abstract: An apparatus comprises a waveguide section including an outer layer of conductive material tubular in shape and having multiple ends; and a joining feature on at least one of the ends of the waveguide section configured for joining to a second separate waveguide section.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: March 16, 2021
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Georgios C. Dogiamis, Sasha N. Oster, Adel A. Elsherbini, Brandon M. Rawlings, Aleksandar Aleksov, Shawna M. Liff, Richard J. Dischler, Johanna M. Swan
  • Patent number: 10937594
    Abstract: Embodiments of the invention include a microelectronic device that includes a plurality of organic dielectric layers and a capacitor formed in-situ with at least one organic dielectric layer of the plurality of organic dielectric layers. The capacitor includes first and second conductive electrodes and an ultra-high-k dielectric layer that is positioned between the first and second conductive electrodes.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: March 2, 2021
    Assignee: Intel Corporation
    Inventors: Thomas L. Sounart, Aleksandar Aleksov, Feras Eid, Georgios C. Dogiamis, Johanna M. Swan, Kristof Darmawikarta