Patents by Inventor Georgiy M. Guryanov

Georgiy M. Guryanov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230357071
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Application
    Filed: July 6, 2023
    Publication date: November 9, 2023
    Inventors: Timothy Michael Gross, Georgiy M. Guryanov
  • Patent number: 11760685
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: September 19, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Georgiy M Guryanov
  • Patent number: 11643356
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: May 9, 2023
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Georgiy M Guryanov
  • Publication number: 20230091841
    Abstract: Described herein are articles and methods of making articles, including a first sheet and a second sheet, wherein the thin sheet and carrier are bonded together using a coating layer, preferably a hydrocarbon polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on either sheet, or both, to control van der Waals, hydrogen and covalent bonding between the sheets. The coating layer bonds the sheets together to prevent formation of a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
    Type: Application
    Filed: November 17, 2022
    Publication date: March 23, 2023
    Inventors: Kaveh Adib, Robert Alan Bellman, Jiangwei Feng, Georgiy M Guryanov, Jhih-Wei Liang, Shiwen Liu, Prantik Mazumder
  • Publication number: 20230002269
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Application
    Filed: August 31, 2022
    Publication date: January 5, 2023
    Inventors: Timothy Michael Gross, Georgiy M Guryanov
  • Patent number: 11535553
    Abstract: Described herein are articles and methods of making articles, including a first sheet and a second sheet, wherein the thin sheet and carrier are bonded together using a coating layer, preferably a hydrocarbon polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on either sheet, or both, to control van der Waals, hydrogen and covalent bonding between the sheets. The coating layer bonds the sheets together to prevent formation of a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: December 27, 2022
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Robert Alan Bellman, Jiangwei Feng, Georgiy M Guryanov, Jhih-Wei Liang, Shiwen Liu, Prantik Mazumder
  • Publication number: 20220324747
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Application
    Filed: June 13, 2022
    Publication date: October 13, 2022
    Inventors: Timothy Michael Gross, Georgiy M. Guryanov
  • Patent number: 11377386
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Grant
    Filed: November 23, 2021
    Date of Patent: July 5, 2022
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Georgiy M Guryanov
  • Publication number: 20220081347
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Application
    Filed: November 23, 2021
    Publication date: March 17, 2022
    Inventors: Timothy Michael Gross, Georgiy M. Guryanov
  • Patent number: 11214510
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: January 4, 2022
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Georgiy M Guryanov
  • Patent number: 10710928
    Abstract: A method of making an antimicrobial glass article that includes the steps: submersing the article in a strengthening bath to exchange a portion of ion-exchangeable metal ions in the glass article with a portion of ion-exchanging metal ions in the strengthening bath to form a compressive stress layer extending from the first surface to a diffusion depth in the article; removing a portion of the compressive stress layer from the first surface of the article to a first depth above the diffusion depth in the article to define a new first surface and a remaining compressive stress layer; and submersing the article in an antimicrobial bath to exchange a portion of the ion-exchangeable and the ion-exchanging metal ions in the compressive stress layer with a portion of the silver metal ions in the antimicrobial bath to impart an antimicrobial property in the article.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: July 14, 2020
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Nicholas Francis Borrelli, Delena Lucinda Justice Duffy, Sumalee Likitvanichkul, Richard Michael Fiacco, Georgiy M Guryanov, Ekaterina Aleksandrovna Kuksenkova, Wageesha Senaratne, Anantha Narayanan Subramanian
  • Publication number: 20200181009
    Abstract: Described herein are articles and methods of making articles, including a first sheet and a second sheet, wherein the thin sheet and carrier are bonded together using a coating layer, preferably a hydrocarbon polymer coating layer, and associated deposition methods and inert gas treatments that may be applied on either sheet, or both, to control van der Waals, hydrogen and covalent bonding between the sheets. The coating layer bonds the sheets together to prevent formation of a permanent bond at high temperature processing while at the same time maintaining a sufficient bond to prevent delamination during high temperature processing.
    Type: Application
    Filed: August 29, 2017
    Publication date: June 11, 2020
    Inventors: Kaveh Adib, Robert Alan Bellman, Jiangwei Feng, Georgiy M Guryanov, Jhih-Wei Liang, Shiwen Liu, Prantik Mazumder
  • Publication number: 20190152838
    Abstract: Glass-based articles that include a hydrogen-containing layer extending from the surface of the article to a depth of layer. The hydrogen-containing layer includes a hydrogen concentration that decreases from a maximum hydrogen concentration to the depth of layer. The glass-based articles exhibit a high Vickers indentation cracking threshold. Glass compositions that are selected to promote the formation of the hydrogen-containing layer and methods of forming the glass-based article are also provided.
    Type: Application
    Filed: November 16, 2018
    Publication date: May 23, 2019
    Inventors: Timothy Michael Gross, Georgiy M. Guryanov
  • Publication number: 20180170803
    Abstract: A method of making an antimicrobial glass article that includes the steps: submersing the article in a strengthening bath to exchange a portion of ion-exchangeable metal ions in the glass article with a portion of ion-exchanging metal ions in the strengthening bath to form a compressive stress layer extending from the first surface to a diffusion depth in the article; removing a portion of the compressive stress layer from the first surface of the article to a first depth above the diffusion depth in the article to define a new first surface and a remaining compressive stress layer; and submersing the article in an antimicrobial bath to exchange a portion of the ion-exchangeable and the ion-exchanging metal ions in the compressive stress layer with a portion of the silver metal ions in the antimicrobial bath to impart an antimicrobial property in the article.
    Type: Application
    Filed: February 15, 2018
    Publication date: June 21, 2018
    Inventors: Dana Craig Bookbinder, Nicholas Francis Borrelli, Delena Lucinda Justice Duffy, Sumalee Likitvanichkul Fagan, Richard Michael Fiacco, Georgiy M. Guryanov, Ekaterina Aleksandrovna Kuksenkova, Wageesha Senaratne, Anantha Narayanan Subramanian
  • Patent number: 9919963
    Abstract: A method of making an antimicrobial glass article that includes the steps: submersing the article in a strengthening bath to exchange a portion of ion-exchangeable metal ions in the glass article with a portion of ion-exchanging metal ions in the strengthening bath to form a compressive stress layer extending from the first surface to a diffusion depth in the article; removing a portion of the compressive stress layer from the first surface of the article to a first depth above the diffusion depth in the article to define a new first surface and a remaining compressive stress layer; and submersing the article in an antimicrobial bath to exchange a portion of the ion-exchangeable and the ion-exchanging metal ions in the compressive stress layer with a portion of the silver metal ions in the antimicrobial bath to impart an antimicrobial property in the article.
    Type: Grant
    Filed: February 10, 2015
    Date of Patent: March 20, 2018
    Assignee: CORNING INCORPORATED
    Inventors: Dana Craig Bookbinder, Nicholas Francis Borrelli, Delena Lucinda Justice Duffy, Richard Michael Fiacco, Georgiy M Guryanov, Ekaterina Aleksandrovna Kuksenkova, Sumalee Likitvanichkul, Anantha Narayanan Subramanian, Wageesha Senaratne
  • Patent number: 9840438
    Abstract: A method of making an antimicrobial article including the steps: providing an article having a first surface and ion-exchangeable metal ions, a strengthening bath comprising ion-exchanging metal ions larger in size than the ion-exchangeable metal ions, and an antimicrobial bath comprising antimicrobial ions, ion-exchangeable metal ions and ion-exchanging ions; submersing the article in the strengthening bath to exchange ion-exchangeable metal ions with ion-exchanging metal ions in the strengthening bath to form a compressive stress region extending from the first surface to a first depth; forming a layer on the first surface arranged over the compressive stress region and defining a second surface; and submersing the article and the layer in the antimicrobial bath to exchange ion-exchangeable and ion-exchanging metal ions in the compressive stress region with antimicrobial ions to impart an antimicrobial region with antimicrobial ions extending from the second surface of the layer to a second depth.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: December 12, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Thomas Michael Castle, Georgiy M Guryanov, Ekaterina Aleksandrovna Kuksenkova, Florence Christine Monique Verrier
  • Publication number: 20150307392
    Abstract: A method of making an antimicrobial article including the steps: providing an article having a first surface and ion-exchangeable metal ions, a strengthening bath comprising ion-exchanging metal ions larger in size than the ion-exchangeable metal ions, and an antimicrobial bath comprising antimicrobial ions, ion-exchangeable metal ions and ion-exchanging ions; submersing the article in the strengthening bath to exchange ion-exchangeable metal ions with ion-exchanging metal ions in the strengthening bath to form a compressive stress region extending from the first surface to a first depth; forming a layer on the first surface arranged over the compressive stress region and defining a second surface; and submersing the article and the layer in the antimicrobial bath to exchange ion-exchangeable and ion-exchanging metal ions in the compressive stress region with antimicrobial ions to impart an antimicrobial region with antimicrobial ions extending from the second surface of the layer to a second depth.
    Type: Application
    Filed: April 21, 2015
    Publication date: October 29, 2015
    Inventors: Thomas Michael Castle, Georgiy M. Guryanov, Ekaterina Aleksandrovna Kuksenkova, Florence Christine Monique Verrier
  • Publication number: 20150225288
    Abstract: A method of making an antimicrobial glass article that includes the steps: submersing the article in a strengthening bath to exchange a portion of ion-exchangeable metal ions in the glass article with a portion of ion-exchanging metal ions in the strengthening bath to form a compressive stress layer extending from the first surface to a diffusion depth in the article; removing a portion of the compressive stress layer from the first surface of the article to a first depth above the diffusion depth in the article to define a new first surface and a remaining compressive stress layer; and submersing the article in an antimicrobial bath to exchange a portion of the ion-exchangeable and the ion-exchanging metal ions in the compressive stress layer with a portion of the silver metal ions in the antimicrobial bath to impart an antimicrobial property in the article.
    Type: Application
    Filed: February 10, 2015
    Publication date: August 13, 2015
    Inventors: Dana Craig Bookbinder, Nicholas Francis Borrelli, Delena Lucinda Justice Duffy, Richard Michael Fiacco, Georgiy M. Guryanov, Ekaterina Aleksandrovna Kuksenkova, Sumalee Likitvanichkul, Anantha Narayanan Subramanian, Wageesha Senaratne