Patents by Inventor Georgy P. Goryunov
Georgy P. Goryunov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230348634Abstract: This invention relates to a homogeneous process to produce propylene polymers using transition metal complexes of a dianionic, tridentate ligand that features a central neutral heterocyclic Lewis base and two phenolate donors, where the tridentate ligand coordinates to the metal center to form two eight-membered rings. Preferably the bis(phenolate) complexes are represented by Formula (I): where M, L, X, m, n, E, E?, Q, R1, R2, R3, R4, R1?, R2?, R3?, R4?, A1, A1?, and are as defined herein, where A1QA1? are part of a heterocyclic Lewis base containing 4 to 40 non-hydrogen atoms that links A2 to A2? via a 3-atom bridge with Q being the central atom of the 3-atom bridge.Type: ApplicationFiled: August 11, 2020Publication date: November 2, 2023Inventors: Jo Ann M. Canich, Ru Xie, Gregory J. Smith-Karahalis, Sarah J. Mattler, Mikhail I. Sharikov, Alexander Z. Voskoboynikov, Vladislav A. Popov, Dmitry V. Uborsky, Georgy P. Goryunov, John R. Hagadorn, Peijun Jiang
-
Publication number: 20230312772Abstract: This invention relates to transition metal complexes of a multi-dentate ligand that features a neutral heterocyclic Lewis base and a second Lewis base, where the multi-dentate ligand coordinates to the metal center to form at least one 8-membered chelate ring.Type: ApplicationFiled: October 20, 2021Publication date: October 5, 2023Inventors: Irene C. Cai, Hua Zhou, Jo Ann M. Canich, John R, Hagadorn, Dmitry V. Uborsky, Georgy P. Goryunov, Mikhail I. Sharikov, Alexander Z. Voskoboynikov
-
Patent number: 11732063Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization. In at least one embodiment, the catalyst compounds belong to a family of compounds comprising amido-phenolate-heterocyclic ligands coordinated to group 4 transition metals. The tridendate ligand may include a central neutral hetrocyclic donor group, an anionic phenolate donor, and an anionic amido donor. In some embodiments, the present disclosure provides a catalyst system comprising an activator and a catalyst of the present disclosure. In some embodiments, the present disclosure provides a polymerization process comprising a) contacting one or more olefin monomers with a catalyst system comprising: i) an activator and ii) a catalyst of the present disclosure.Type: GrantFiled: February 11, 2021Date of Patent: August 22, 2023Assignee: ExxonMobil Chemical Patents Inc.Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Jo Ann M. Canich
-
Patent number: 11613593Abstract: Metallocene complexes represented by the structure below are useful for alpha olefin oligomerization in the presence of an activator to generate polyalphaolefins having a high percentage of vinylidene termination and relatively low Mn values. M is a group 4 transition metal. A is a bridging group having one bridging atom extending between a first indenyl ring and a second indenyl ring. Each X is independently an anionic ligand, or two Xs are joined and bound to M to form a metallocycle ring, or two Xs are joined to form a chelating ligand, a diene ligand, or an alkylidene ligand. R1, R1?, R3, R3?, R4, R4?, R7 and R7? are hydrogen. R5, R5?, R6, and R6? are independently a C1-C10, optionally substituted, hydrocarbyl group, or R5 and R6 and/or R5? and R6? are bonded together to form an optionally substituted hydrocarbyl ring structure.Type: GrantFiled: February 11, 2021Date of Patent: March 28, 2023Assignee: ExxonMobil Chemical Patents Inc.Inventors: Jo Ann M. Canich, Jian Yang, Alexander Z. Voskoboynikov, Andrey F. Asachenko, Oleg V. Samsonov, Georgy P. Goryunov
-
Patent number: 11578148Abstract: A metal complex of the formula (1) TCyLMZp (1), wherein M is a group 4 metal, Z is an anionic ligand, p is the number 1 or 2, TCy is a thiophene-fused cyclopentadienyl-type ligand of the formula (2) is described. Methods of making and using the metal complex are also described.Type: GrantFiled: December 13, 2018Date of Patent: February 14, 2023Inventors: Alexandra Berthoud, Maxence Valla, Georgy P. Goryunov, Oleg V. Samsonov, Dmitry Y. Mladentsev, Dmitry V. Uborsky, Alexander Z. Voskoboynikov
-
Patent number: 11254763Abstract: This invention relates to transition metal complexes of a dianionic, tridentate ligand that features a central neutral heterocyclic Lewis base and two phenolate donors, where the tridentate ligand coordinates to the metal center to form two eight-membered rings. Preferably the bis(phenolate) complexes are represented by Formula (I): where M, L, X, m, n, E, E?, Q, R1, R2, R3, R4, R1?, R2?, R3?, R4?, A1, A1?, are as defined herein, where A1QA1? are part of a heterocyclic Lewis base containing 4 to 40 non-hydrogen atoms that links A2 to A2? via a 3-atom bridge with Q being the central atom of the 3-atom bridge.Type: GrantFiled: February 11, 2020Date of Patent: February 22, 2022Assignee: ExxonMobil Chemical Patents Inc.Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Michelle E. Titone, Alex E. Carpenter, Catherine A. Faler, Jo Ann M. Canich
-
Patent number: 11248070Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the Lewis base catalysts (e.g., bis(aryl phenolate) five-membered ring catalysts), can be stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high molecular weights or polymers having low to very molecular weights, and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.Type: GrantFiled: February 11, 2020Date of Patent: February 15, 2022Assignee: ExxonMobil Chemical Patents Inc.Inventors: Georgy P. Goryunov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Irene C. Cai, Jo Ann M. Canich
-
Patent number: 11214634Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the Lewis base catalysts can be stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high melting points, high isotacticity, and controllable molecular weights, and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.Type: GrantFiled: February 11, 2020Date of Patent: January 4, 2022Assignee: ExxonMobil Chemical Patents Inc.Inventors: Georgy P. Goryunov, Oleg V. Samsonov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, Jo Ann M. Canich, John R. Hagadorn
-
Patent number: 11203654Abstract: The present disclosure relates to bis(aryl phenolate) Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the bis(aryl phenolate) Lewis base catalysts are stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high molecular weights and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.Type: GrantFiled: February 11, 2020Date of Patent: December 21, 2021Assignee: ExxonMobil Chemical Patents Inc.Inventors: Georgy P. Goryunov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Irene C. Cai, Hua Zhou, Jo Ann M. Canich
-
Patent number: 11180580Abstract: This invention relates to transition metal complexes represented by the formula: catalyst systems comprising the complexes, and polymerization methods for olefinic monomers using the catalyst systems. In said formula, M is a transition metal; E is NR2, CR3R4, O, S, or SiR5R6; Q is optional substitution; p is an integer ranging from 0 to 3; L is an optional neutral ligand; m is an integer ranging from 0 to 3; X is an anionic leaving group; n is 1 or 2, with m+n being 4 or less; J is a linker group contributing two or three atoms that are located within a first chelate ring; R1 and R1? are independently a hydrocarbyl group or a trihydrocarbylsilyl group; R2 is a hydrocarbyl group; R3 and R4 are independently H, a hydrocarbyl group, or a trihydrocarbylsilyl group; and R5 and R5 are independently a hydrocarbyl group.Type: GrantFiled: March 25, 2020Date of Patent: November 23, 2021Assignee: ExxonMobil Chemical Patents Inc.Inventors: John R. Hagadorn, Jo Ann M. Canich, Mikhail I. Sharikov, Georgy P. Goryunov, Pavel S. Kulyabin, Dmitry V. Uborsky, Alexander Z. Voskoboynikov
-
Publication number: 20210269559Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization. In at least one embodiment, the catalyst compounds belong to a family of compounds comprising amido-phenolate-heterocyclic ligands coordinated to group 4 transition metals. The tridendate ligand may include a central neutral hetrocyclic donor group, an anionic phenolate donor, and an anionic amido donor. In some embodiments, the present disclosure provides a catalyst system comprising an activator and a catalyst of the present disclosure. In some embodiments, the present disclosure provides a polymerization process comprising a) contacting one or more olefin monomers with a catalyst system comprising: i) an activator and ii) a catalyst of the present disclosure.Type: ApplicationFiled: February 11, 2021Publication date: September 2, 2021Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Jo Ann M. Canich
-
Publication number: 20210269561Abstract: Metallocene complexes represented by the structure below are useful for alpha olefin oligomerization in the presence of an activator to generate polyalphaolefins having a high percentage of vinylidene termination and relatively low Mn values. M is a group 4 transition metal. A is a bridging group having one bridging atom extending between a first indenyl ring and a second indenyl ring. Each X is independently an anionic ligand, or two Xs are joined and bound to M to form a metallocycle ring, or two Xs are joined to form a chelating ligand, a diene ligand, or an alkylidene ligand. R1, R1?, R3, R3?, R4, R4?, R7 and R7? are hydrogen. R5, R5?, R6, and R6? are independently a C1-C10, optionally substituted, hydrocarbyl group, or R5 and R6 and/or R5? and R6? are bonded together to form an optionally substituted hydrocarbyl ring structure.Type: ApplicationFiled: February 11, 2021Publication date: September 2, 2021Inventors: Jo Ann M. Canich, Jian Yang, Alexander Z. Voskoboynikov, Andrey F. Asachenko, Oleg V. Samsonov, Georgy P. Goryunov
-
Publication number: 20210087305Abstract: A metal complex of the formula (1) TCyLMZp (1), wherein M is a group 4 metal, Z is an anionic ligand, p is the number 1 or 2, TCy is a thiophene-fused cyclopentadienyl-type ligand of the formula (2) is described. Methods of making and using the metal complex are also described.Type: ApplicationFiled: December 13, 2018Publication date: March 25, 2021Applicant: ARLANXEO NETHERLANDS B.V.Inventors: Alexandra BERTHOUD, Maxence Valla, Georgy P. GORYUNOV, Oleg V, SAMSONOV, Dmitry Y. MLADENTSEV, Dmitry V. UBORSKY, Alexander Z. VOSKOBOYNIKOV
-
Patent number: 10815318Abstract: Quinolinyldiamido transition metal complexes are disclosed for use in alkene polymerization to produce multimodal polyolefins.Type: GrantFiled: February 12, 2019Date of Patent: October 27, 2020Assignee: ExxonMobil Chemical Patents Inc.Inventors: John R. Hagadorn, Patrick J. Palafox, Peijun Jiang, Yaohua Gao, Xin Chen, Georgy P. Goryunov, Mikhail I. Sharikov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov
-
Patent number: 10807997Abstract: The present disclosure provides methods for making quinolinyldiamine products from quinolinyl starting materials. In addition, the quinolinyldiamines can be used as ligands or ligand precursors for catalysts, e.g. for use in olefin polymerization.Type: GrantFiled: August 26, 2019Date of Patent: October 20, 2020Assignee: ExxonMobil Chemical Patents Inc.Inventors: Oleg V. Samsonov, Mikhail I. Sharikov, Georgy P. Goryunov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, Michelle E. Titone, John R. Hagadorn, Jo Ann M. Canich
-
Publication number: 20200308315Abstract: This invention relates to transition metal complexes represented by the formula: catalyst systems comprising the complexes, and polymerization methods for olefinic monomers using the catalyst systems. In said formula, M is a transition metal; E is NR2, CR3R4, O, S, or SiR5R6; Q is optional substitution; p is an integer ranging from 0 to 3; L is an optional neutral ligand; m is an integer ranging from 0 to 3; X is an anionic leaving group; n is 1 or 2, with m+n being 4 or less; J is a linker group contributing two or three atoms that are located within a first chelate ring; R1 and R1? are independently a hydrocarbyl group or a trihydrocarbylsilyl group; R2 is a hydrocarbyl group; R3 and R4 are independently H, a hydrocarbyl group, or a trihydrocarbylsilyl group; and R5 and R5 are independently a hydrocarbyl group.Type: ApplicationFiled: March 25, 2020Publication date: October 1, 2020Inventors: John R. Hagadorn, Jo Ann M. Canich, Mikhail I. Sharikov, Georgy P. Goryunov, Pavel S. Kulyabin, Dmitry V. Uborsky, Alexander Z. Voskoboynikov
-
Publication number: 20200255555Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the Lewis base catalysts can be stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high melting points, high isotacticity, and controllable molecular weights, and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.Type: ApplicationFiled: February 11, 2020Publication date: August 13, 2020Inventors: Georgy P. Goryunov, Oleg V. Samsonov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, Jo Ann M. Canich, John R. Hagadorn
-
Publication number: 20200254431Abstract: The present disclosure relates to bis(aryl phenolate) Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the bis(aryl phenolate) Lewis base catalysts are stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high molecular weights and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.Type: ApplicationFiled: February 11, 2020Publication date: August 13, 2020Inventors: Georgy P. Goryunov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Irene C. Cai, Hua Zhou, Jo Ann M. Canich
-
Publication number: 20200255556Abstract: The present disclosure relates to Lewis base catalysts. Catalysts, catalyst systems, and processes of the present disclosure can provide high temperature ethylene polymerization, propylene polymerization, or copolymerization as the Lewis base catalysts (e.g., bis(aryl phenolate) five-membered ring catalysts), can be stable at high polymerization temperatures and have good activity at the high polymerization temperatures. The stable catalysts with good activity can provide formation of polymers having high molecular weights or polymers having low to very molecular weights, and the ability to make an increased amount of polymer in a given reactor, as compared to conventional catalysts. Hence, the present disclosure demonstrates highly active catalysts capable of operating at high reactor temperatures while producing polymers with controlled molecular weights and or robust isotacticity.Type: ApplicationFiled: February 11, 2020Publication date: August 13, 2020Inventors: Georgy P. Goryunov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Irene C. Cai, Jo Ann M. Canich
-
Publication number: 20200255553Abstract: This invention relates to transition metal complexes of a dianionic, tridentate ligand that features a central neutral heterocyclic Lewis base and two phenolate donors, where the tridentate ligand coordinates to the metal center to form two eight-membered rings. Preferably the bis(phenolate) complexes are represented by Formula (I): where M, L, X, m, n, E, E?, Q, R1, R2, R3, R4, R1?, R2?, R3?, R4?, A1, A1?, are as defined herein, where A1QA1? are part of a heterocyclic Lewis base containing 4 to 40 non-hydrogen atoms that links A2 to A2? via a 3-atom bridge with Q being the central atom of the 3-atom bridge.Type: ApplicationFiled: February 11, 2020Publication date: August 13, 2020Inventors: Georgy P. Goryunov, Mikhail I. Sharikov, Vladislav A. Popov, Dmitry V. Uborsky, Alexander Z. Voskoboynikov, John R. Hagadorn, Michelle E. Titone, Alex E. Carpenter, Catherine A. Faler, Jo Ann M. Canich