Patents by Inventor Georgy Zerkalov

Georgy Zerkalov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230280295
    Abstract: Described methods and systems are used for in-situ impedance spectroscopy analysis of battery cells in multi-cell battery packs. Specifically, the cell impedances are determined while the pack continues to operate, such as being charged or discharged. For example, the pack voltage/power output remains unchanged while this analysis is initiated, performed, and ended. Cell impedance is determined based on the cell's response to the signal applied to the cell. For example, a current through the cell is charged while monitoring cells' voltage response. Although the power output of the changes during this testing, but the operation of the pack is not impacted due to the power compensation provided by one or more other cells in the pack thereby ensuring uninterrupted operation of the pack. This in situ testing is provided by the unique architecture of the pack, comprising multiple nodes and individual node controllers.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 7, 2023
    Applicant: Element Energy, Inc.
    Inventors: Rainer Johannes Fasching, Georgy Zerkalov, Arnaud Devie, Seth Marshall Kahn, Anthony John Stratakos, Corrado Cammi, Anderson Rennie John, Yoosok Saw
  • Publication number: 20230280412
    Abstract: Described methods and systems provide in-situ leakage current testing of battery cells in battery packs even while these packs operate. Specifically, an external electrical current is discontinued through a tested battery cell using a node controller, to which the tested battery cell is independently connected. Changes in the open circuit voltage (OCV) are then detected by the node controller for a set period time. Any voltage change, associated with taking the tested cell offline, is compensated by one or more other cells in the battery pack. The overall pack current and voltage remains substantially unchanged (based on the application demands), while the in-situ leakage current testing is initiated, performed, and/or completed. The OCV changes are then used to determine the leakage current of the tested cell and, in some examples, to determine the state of health of this cell and/or adjust the operating parameters of this cell.
    Type: Application
    Filed: May 12, 2023
    Publication date: September 7, 2023
    Applicant: Element Energy, Inc.
    Inventors: Rainer Johannes Fasching, Georgy Zerkalov, Arnaud Devie, Seth Marshall Kahn, Anthony John Stratakos, Corrado Cammi, Anderson Rennie John, Yoosok Saw
  • Patent number: 11698416
    Abstract: Described methods and systems provide in-situ leakage current testing of battery cells in battery packs even while these packs operate. Specifically, an external electrical current is discontinued through a tested battery cell using a node controller, to which the tested battery cell is independently connected. Changes in the open circuit voltage (OCV) are then detected by the node controller for a set period time. Any voltage change, associated with taking the tested cell offline, is compensated by one or more other cells in the battery pack. The overall pack current and voltage remains substantially unchanged (based on the application demands), while the in-situ leakage current testing is initiated, performed, and/or completed. The OCV changes are then used to determine the leakage current of the tested cell and, in some examples, to determine the state of health of this cell and/or adjust the operating parameters of this cell.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: July 11, 2023
    Assignee: Element Energy, Inc.
    Inventors: Rainer Johannes Fasching, Georgy Zerkalov, Arnaud Devie, Seth Marshall Kahn, Anthony John Stratakos, Corrado Cammi, Anderson Rennie John, Yoosok Saw
  • Patent number: 11692956
    Abstract: Described methods and systems are used for in-situ impedance spectroscopy analysis of battery cells in multi-cell battery packs. Specifically, the cell impedances are determined while the pack continues to operate, such as being charged or discharged. For example, the pack voltage/power output remains unchanged while this analysis is initiated, performed, and ended. Cell impedance is determined based on the cell's response to the signal applied to the cell. For example, a current through the cell is charged while monitoring cells' voltage response. Although the power output of the changes during this testing, but the operation of the pack is not impacted due to the power compensation provided by one or more other cells in the pack thereby ensuring uninterrupted operation of the pack. This in situ testing is provided by the unique architecture of the pack, comprising multiple nodes and individual node controllers.
    Type: Grant
    Filed: August 13, 2021
    Date of Patent: July 4, 2023
    Assignee: Element Energy, Inc.
    Inventors: Rainer Johannes Fasching, Georgy Zerkalov, Arnaud Devie, Seth Marshall Kahn, Anthony John Stratakos, Corrado Cammi, Anderson Rennie John, Yoosok Saw
  • Publication number: 20230184844
    Abstract: Described herein are methods and systems for detecting variation in minor total-impedance contributors in sets of electrochemical cells. For example, a method comprises maintaining a substantially constant current through the set of electrochemical cells and obtaining multiple voltage readings of the cells while the substantially constant current is maintained. The method then proceeds with determining multiple differential capacity values from the multiple voltage readings, characterizing one or more peaks in the multiple differential capacity values, and determining the variation in the minor total-impedance contributor based on one or more peaks. More specifically, partial capacitance values can be assigned to different impedance channels based on these peaks or, more specifically, based on the separation of adjacent peaks.
    Type: Application
    Filed: December 15, 2022
    Publication date: June 15, 2023
    Applicant: Element Energy, Inc.
    Inventors: Arnaud Devie, Georgy Zerkalov, Rainer Johannes Fasching, Nathan Brinkerhoff
  • Patent number: 11675015
    Abstract: An integrated circuit device includes a controller, a voltage source coupled to the controller, a voltage sampler coupled to the controller, a to current detector coupled to the controller and memory coupled to the controller, where memory includes code segments executable by the controller for: (a) measuring a cell voltage to determine an initial voltage; (b) holding the cell voltage at the initial voltage using a power source; and (c) determining the leakage current of the cell by the current provided by the current power source with a low current detector. The power source can be one or both of a voltage source and a current source.
    Type: Grant
    Filed: July 5, 2021
    Date of Patent: June 13, 2023
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Rainer Fasching, Georgy Zerkalov, Tina Alikahi, Jason Wortham, Hushnak Singh
  • Patent number: 11360152
    Abstract: An integrated circuit device includes a controller, an optional current source coupled to the controller, a voltage sampler coupled to the controller, a current detector coupled to the controller, and memory coupled to the controller, where memory includes code segments executable by the controller to: (a) apply a current pulse to a cell; (b) measure a voltage of the cell during the current pulse; (c) calculate an impedance of the cell from the measured voltage; and (d) determine an operational state of the cell from the impedance.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 14, 2022
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Rainer Fasching, Georgy Zerkalov
  • Publication number: 20220057350
    Abstract: Described methods and systems are used for in-situ impedance spectroscopy analysis of battery cells in multi-cell battery packs. Specifically, the cell impedances are determined while the pack continues to operate, such as being charged or discharged. For example, the pack voltage/power output remains unchanged while this analysis is initiated, performed, and ended. Cell impedance is determined based on the cell's response to the signal applied to the cell. For example, a current through the cell is charged while monitoring cells' voltage response. Although the power output of the changes during this testing, but the operation of the pack is not impacted due to the power compensation provided by one or more other cells in the pack thereby ensuring uninterrupted operation of the pack. This in situ testing is provided by the unique architecture of the pack, comprising multiple nodes and individual node controllers.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 24, 2022
    Applicant: Element Energy, Inc.
    Inventors: Rainer Johannes Fasching, Georgy Zerkalov, Arnaud Devie, Seth Marshall Kahn, Anthony John Stratakos, Corrado Cammi, Anderson Rennie John, Yoosok Saw
  • Publication number: 20220057455
    Abstract: Described methods and systems provide in-situ leakage current testing of battery cells in battery packs even while these packs operate. Specifically, an external electrical current is discontinued through a tested battery cell using a node controller, to which the tested battery cell is independently connected. Changes in the open circuit voltage (OCV) are then detected by the node controller for a set period time. Any voltage change, associated with taking the tested cell offline, is compensated by one or more other cells in the battery pack. The overall pack current and voltage remains substantially unchanged (based on the application demands), while the in-situ leakage current testing is initiated, performed, and/or completed. The OCV changes are then used to determine the leakage current of the tested cell and, in some examples, to determine the state of health of this cell and/or adjust the operating parameters of this cell.
    Type: Application
    Filed: August 13, 2021
    Publication date: February 24, 2022
    Applicant: Element Energy, Inc.
    Inventors: Rainer Johannes Fasching, Georgy Zerkalov, Arnaud Devie, Seth Marshall Kahn, Anthony John Stratakos, Corrado Cammi, Anderson Rennie John, Yoosok Saw
  • Patent number: 11131717
    Abstract: Described methods and systems provide in-situ leakage current testing of battery cells in battery packs even while these packs operate. Specifically, an external electrical current is discontinued through a tested battery cell using a node controller, to which the tested battery cell is independently connected. Changes in the open circuit voltage (OCV) are then detected by the node controller for a set period time. Any voltage change, associated with taking the tested cell offline, is compensated by one or more other cells in the battery pack. The overall pack current and voltage remains substantially unchanged (based on the application demands), while the in-situ leakage current testing is initiated, performed, and/or completed. The OCV changes are then used to determine the leakage current of the tested cell and, in some examples, to determine the state of health of this cell and/or adjust the operating parameters of this cell.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: September 28, 2021
    Assignee: Element Energy, Inc.
    Inventors: Rainer Johannes Fasching, Georgy Zerkalov, Arnaud Devie, Seth Marshall Kahn, Anthony John Stratakos, Corrado Cammi, Anderson Rennie John, Yoosok Saw
  • Patent number: 11125707
    Abstract: Described methods and systems are used for in-situ impedance spectroscopy analysis of battery cells in multi-cell battery packs. Specifically, the cell impedances are determined while the pack continues to operate, such as being charged or discharged. For example, the pack voltage/power output remains unchanged while this analysis is initiated, performed, and ended. Cell impedance is determined based on the cell's response to the signal applied to the cell. For example, a current through the cell is charged while monitoring cells' voltage response. Although the power output of the changes during this testing, but the operation of the pack is not impacted due to the power compensation provided by one or more other cells in the pack thereby ensuring uninterrupted operation of the pack. This in situ testing is provided by the unique architecture of the pack, comprising multiple nodes and individual node controllers.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: September 21, 2021
    Assignee: Element Energy, Inc.
    Inventors: Rainer Johannes Fasching, Georgy Zerkalov, Arnaud Devie, Seth Marshall Kahn, Anthony John Stratakos, Corrado Cammi, Anderson Rennie John, Yoosok Saw
  • Patent number: 11061076
    Abstract: An integrated circuit device includes a controller, a voltage source coupled to the controller, a voltage sampler coupled to the controller, a low current detector coupled to the controller; and memory coupled to the controller, where memory includes code segments executable by the controller for: (a) measuring a cell voltage to determine an initial voltage; (b) holding the cell voltage at the initial voltage using a power source; and (c) determining the leakage current of the cell by the current provided by the current power source with a low current detector. The power source can be one or both of a voltage source and a current source.
    Type: Grant
    Filed: July 27, 2018
    Date of Patent: July 13, 2021
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Rainer Fasching, Georgy Zerkalov, Tina Alikahi, Jason Wortham, Hushnak Singh
  • Patent number: 10734828
    Abstract: A method for charging a battery includes (a) applying a charging current pulse to the battery, (b) after the step of applying the charging current pulse to the battery, measuring a first voltage across the battery, (c) estimating an equilibrium voltage of the battery, (d) determining a Nernst voltage of the battery from a difference between the first voltage and the equilibrium voltage, and (e) controlling charging of the battery at least partially based on the Nernst voltage.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: August 4, 2020
    Assignee: Maxim Integrated Products, Inc.
    Inventors: Rainer Fasching, Georgy Zerkalov, Jason Wortham
  • Publication number: 20190148964
    Abstract: A method for charging a battery includes (a) applying a charging current pulse to the battery, (b) after the step of applying the charging current pulse to the battery, measuring a first voltage across the battery, (c) estimating an equilibrium voltage of the battery, (d) determining a Nernst voltage of the battery from a difference between the first voltage and the equilibrium voltage, and (e) controlling charging of the battery at least partially based on the Nernst voltage.
    Type: Application
    Filed: November 9, 2018
    Publication date: May 16, 2019
    Inventors: Rainer Fasching, Georgy Zerkalov, Jason Wortham
  • Publication number: 20180237699
    Abstract: The invention belongs to processes of converting carbonaceous raw materials to produce gaseous, solid, and liquid energy carriers and can be used in municipal, agriculture, wood processing industry, in the mining and petrochemical industries and other industries for thermochemical conversion of carbon-containing wastes from these industries to produce combustible gas, solid and liquid fuels, sorbents and other products. The process provides for the use of a vortex gasifier to produce hot generator gas, used as a heat carrier for the process of pyrolysis of raw material in the reactor, in which char and vapor gas are produced as a result of thermochemical reaction, a purification device to treat produced in the reactor vapor gas, and an apparatus for separation of vapor gas into different components.
    Type: Application
    Filed: February 21, 2018
    Publication date: August 23, 2018
    Inventors: Georgy Zerkalov, Valerii Lurii