Patents by Inventor Gerald Edward Sobelman

Gerald Edward Sobelman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6313660
    Abstract: A programmable gate array is disclosed for implementing asynchronous logic. In one embodiment, the array includes a set of cells, at least one of which includes a threshold gate having a plurality of inputs, an output, and a threshold value. Signals may assume an ASSERTED state having a logic meaning and a NULL state that has no logic meaning. The gate output switches to NULL when all inputs are NULL, and switches to the ASSERTED state when the number of ASSERTED inputs exceeds the threshold value. In the preferred embodiment, the gate exhibits hysteresis such that the output remains ASSERTED while the number of ASSERTED inputs remains greater than zero, less than the threshold value. In an alternate embodiment, an array of simplified threshold elements is used to form more complex threshold gates.
    Type: Grant
    Filed: October 18, 1999
    Date of Patent: November 6, 2001
    Assignee: Theseus Logic, Inc.
    Inventors: Gerald Edward Sobelman, David Parker
  • Patent number: 6262593
    Abstract: An m-of-n threshold gate is disclosed having an output stated derived from the voltage of a signal node. A “Go-to-Data” circuit pulls the signal node to a first state, corresponding to an ASSERTED (logically meaningful) output when a threshold number of inputs is in the ASSERTED state. A “Go-to-NULL” circuit pulls the signal node to a second state, corresponding to a NULL (logically meaningless) output when all inputs are in the NULL state. In a semi-dynamic embodiment, a weak feedback transistor holds the signal node in a predetermined state when some, but less than the threshold number of inputs is ASSERTED. In a dynamic embodiment, the signal node becomes isolated when less than the threshold number of inputs is ASSERTED, but holds sufficient charge to maintain the signal node in a state that existed at the time of isolation. A variety of GTN circuits are disclosed.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: July 17, 2001
    Assignee: Theseus Logic, Inc.
    Inventors: Gerald Edward Sobelman, Jason J. Hinze
  • Patent number: 6043674
    Abstract: Threshold logic gates are disclosed that respond to signals that may assume at least a first state having an arithmetic or logic meaning, and a second NULL state that has no arithmetic or logic meaning. Threshold values may be equal to or less than the number of input signal lines. Threshold gates switch their outputs from NULL to a meaningful state when the threshold number of inputs assume meaningful states. Gates will hold outputs in a meaningful (or non-null) state when the number of asserted inputs remains positive, even if the number is less than the threshold. In one embodiment, threshold gates include a "FLASH" input that forces the gate to NULL. In another embodiment, threshold gates include one or more "SET" inputs that drive the gate output to NULL or to a meaningfull state.
    Type: Grant
    Filed: January 8, 1998
    Date of Patent: March 28, 2000
    Assignee: Theseus Logic, Inc.
    Inventor: Gerald Edward Sobelman
  • Patent number: 6020754
    Abstract: A programmable gate array is disclosed for implementing asynchronous logic. In one embodiment, the array includes a set of cells, at least one of which is programmed to function as a threshold gate having a plurality of inputs, an output, and a threshold value. Signals may assume a DATA state having a logic meaning and a NULL state that has no logic meaning. The gate output switches to NULL when all inputs are NULL, and switches to the ASSERTED state when the number of DATA inputs exceeds the threshold value. The gate preferably exhibit hysteresis such that the output remains DATA while the number of DATA inputs remains greater than zero, and less than the threshold value. In an alternate embodiment, and array of simplified threshold elements is used to form more complex threshold gates.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: February 1, 2000
    Assignee: Theseus Logic, Inc.
    Inventors: Gerald Edward Sobelman, David Parker, Karl M. Fant
  • Patent number: 5986466
    Abstract: A programmable gate array is disclosed for implementing asynchronous logic. In one embodiment, the array includes a set of cells, at least one of which includes a threshold gate having a plurality of inputs, an output, and a threshold value. Signals may assume an ASSERTED state having a logic meaning and a NULL state that has no logic meaning. The gate output switches to NULL when all inputs are NULL, and switches to the ASSERTED state when the number of ASSERTED inputs exceeds the threshold value. In the preferred embodiment, the gate exhibits hysteresis such that the output remains ASSERTED while the number of ASSERTED inputs remains greater than zero, and less than the threshold value. In an alternate embodiment, an array of simplified threshold elements is used to form more complex threshold gates.
    Type: Grant
    Filed: October 8, 1997
    Date of Patent: November 16, 1999
    Assignee: Theseus Logic, Inc.
    Inventors: Gerald Edward Sobelman, David Parker