Patents by Inventor Gerald H. Negley
Gerald H. Negley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230277867Abstract: Modulated light therapy devices for treatment of dermatological disorders of the scalp are provided. An exemplary device includes a flexible printed circuit board (FPCB) supporting at least one light emitting device having an emitter height. The FPCB includes multiple interconnected panels and bending regions defined in and between at least some of the interconnected panels as to allow the FPCB to be configured in a concave shape to cover at least a portion of a cranial vertex of the patient. At least one light-transmissive layer proximate to the FPCB is configured to transmit (e.g., incoherent) light emissions generated by at least one light emitting device. At least one standoff is configured to be arranged between the FPCB and the scalp of the patient, wherein the at least one standoff includes a standoff height that exceeds the emitter height.Type: ApplicationFiled: May 11, 2023Publication date: September 7, 2023Inventors: Nicholas William Medendorp, JR., Gerald H. Negley, Matthew C. Reynolds, James Michael Lay
-
Publication number: 20230211174Abstract: Systems and methods for phototherapeutic modulation of nitric oxide in mammalian tissue include use of a first wavelength and first radiant flux of light to stimulate enzymatic generation of nitric oxide, and use of a second wavelength and second radiant flux of light to stimulate release of nitric oxide from endogenous stores of nitric oxide. Pulsed light and/or partially non-overlapping light impingement windows may be used. Non-coherent light impinged on tissue may include a peak wavelength in a range of from 410 nm to 440 nm in the absence of light emissions having a peak wavelength of from 600 nm to 900 nm.Type: ApplicationFiled: March 9, 2023Publication date: July 6, 2023Inventors: Nathan Stasko, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
-
Patent number: 11617895Abstract: Systems and methods for phototherapeutic modulation of nitric oxide in mammalian tissue include use of a first wavelength and first radiant flux of light to stimulate enzymatic generation of nitric oxide, and use of a second wavelength and second radiant flux of light to stimulate release of nitric oxide from endogenous stores of nitric oxide. Pulsed light and/or partially non-overlapping light impingement windows may be used. Non-coherent light impinged on tissue may include a peak wavelength in a range of from 410 nm to 440 nm in the absence of light emissions having a peak wavelength of from 600 nm to 900 nm.Type: GrantFiled: June 10, 2020Date of Patent: April 4, 2023Assignee: KNOW Bio, LLCInventors: Nathan Stasko, Nicholas William Medendorp, Jr., Gerald H. Negley, Katelyn P. Reighard
-
Patent number: 11524173Abstract: Systems and methods for phototherapeutic modulation of nitric oxide in mammalian tissue include use of a first wavelength and first radiant flux of light to stimulate enzymatic generation of nitric oxide, and use of a second wavelength and second radiant flux of light to stimulate release of nitric oxide from endogenous stores of nitric oxide. Pulsed light and/or partially non-overlapping light impingement windows may be used. Non-coherent light impinged on tissue may include a peak wavelength in a range of from 410 nm to 440 nm in the absence of light emissions having a peak wavelength of from 600 nm to 900 nm.Type: GrantFiled: December 10, 2019Date of Patent: December 13, 2022Assignee: KNOW Bio, LLCInventors: Nathan Stasko, Nicholas William Medendorp, Jr., Gerald H. Negley, Katelyn P. Reighard
-
Patent number: 11484730Abstract: Systems and methods for phototherapeutic modulation of nitric oxide in mammalian tissue include use of a first wavelength and first radiant flux of light to stimulate enzymatic generation of nitric oxide, and use of a second wavelength and second radiant flux of light to stimulate release of nitric oxide from endogenous stores of nitric oxide. Pulsed light and/or partially non-overlapping light impingement windows may be used. Non-coherent light impinged on tissue may include a peak wavelength in a range of from 410 nm to 440 nm in the absence of light emissions having a peak wavelength of from 600 nm to 900 nm.Type: GrantFiled: December 10, 2019Date of Patent: November 1, 2022Assignee: KNOW Bio, LLCInventors: Nathan Stasko, Nicholas William Medendorp, Jr., Gerald H. Negley, Katelyn P. Reighard
-
Publication number: 20220280809Abstract: Modulated light therapy devices for treatment of dermatological disorders of the scalp are provided. An exemplary device includes a flexible printed circuit board (FPCB) supporting at least one light emitting device having an emitter height. The FPCB includes multiple interconnected panels and bending regions defined in and between at least some of the interconnected panels as to allow the FPCB to be configured in a concave shape to cover at least a portion of a cranial vertex of the patient. At least one light-transmissive layer proximate to the FPCB is configured to transmit (e.g., incoherent) light emissions generated by at least one light emitting device. At least one standoff is configured to be arranged between the FPCB and the scalp of the patient, wherein the at least one standoff includes a standoff height that exceeds the emitter height.Type: ApplicationFiled: May 23, 2022Publication date: September 8, 2022Inventors: Nicholas William Medendorp, JR., Gerald H. Negley, Matthew C. Reynolds, James Michael Lay
-
Patent number: 11400309Abstract: Modulated light therapy devices for treatment of dermatological disorders of the scalp are provided. An exemplary device includes a flexible printed circuit board (FPCB) supporting at least one light emitting device having an emitter height. The FPCB includes multiple interconnected panels and bending regions defined in and between at least some of the interconnected panels as to allow the FPCB to be configured in a concave shape to cover at least a portion of a cranial vertex of the patient. At least one light-transmissive layer proximate to the FPCB is configured to transmit (e.g., incoherent) light emissions generated by at least one light emitting device. At least one standoff is configured to be arranged between the FPCB and the scalp of the patient, wherein the at least one standoff includes a standoff height that exceeds the emitter height.Type: GrantFiled: May 27, 2020Date of Patent: August 2, 2022Assignee: KNOW Bio, LLCInventors: Nicholas William Medendorp, Jr., Gerald H. Negley, Matthew Carl Reynolds, James Michael Lay
-
Patent number: 11383095Abstract: Systems and methods for phototherapeutic modulation of nitric oxide in mammalian tissue include use of a first wavelength and first radiant flux of light to stimulate enzymatic generation of nitric oxide, and use of a second wavelength and second radiant flux of light to stimulate release of nitric oxide from endogenous stores of nitric oxide. Pulsed light and/or partially non-overlapping light impingement windows may be used. Non-coherent light impinged on tissue may include a peak wavelength in a range of from 410 nm to 440 nm in the absence of light emissions having a peak wavelength of from 600 nm to 900 nm.Type: GrantFiled: December 10, 2019Date of Patent: July 12, 2022Assignee: KNOW Bio, LLCInventors: Nathan Stasko, Nicholas William Medendorp, Jr., Gerald H. Negley, Katelyn P. Reighard
-
Patent number: 11338151Abstract: Systems and methods for phototherapeutic modulation of nitric oxide in mammalian tissue include use of a first wavelength and first radiant flux of light to stimulate enzymatic generation of nitric oxide, and use of a second wavelength and second radiant flux of light to stimulate release of nitric oxide from endogenous stores of nitric oxide. Pulsed light and/or partially non-overlapping light impingement windows may be used. Non-coherent light impinged on tissue may include a peak wavelength in a range of from 410 nm to 440 nm in the absence of light emissions having a peak wavelength of from 600 nm to 900 nm.Type: GrantFiled: December 10, 2019Date of Patent: May 24, 2022Assignee: KNOW Bio, LLCInventors: Nathan Stasko, Nicholas William Medendorp, Jr., Gerald H. Negley, Katelyn P. Reighard
-
Publication number: 20210138259Abstract: Methods and related devices for impinging light on tissue, for example within a body of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: January 13, 2021Publication date: May 13, 2021Inventors: Nathan Stasko, David T. Emerson, Adam Cockrell, F. Neal Hunter, Michael John Bergmann, Rebecca McDonald, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
-
Publication number: 20210128938Abstract: Methods and related devices for impinging light on tissue, for example within a body of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: January 13, 2021Publication date: May 6, 2021Inventors: Nathan Stasko, David T. Emerson, Adam Cockrell, F. Neal Hunter, Michael John Bergmann, Rebecca McDonald, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
-
Publication number: 20210128936Abstract: Methods and related devices for impinging light on tissue, for example within a body of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: January 13, 2021Publication date: May 6, 2021Inventors: Nathan Stasko, David T. Emerson, Adam Cockrell, F. Neal Hunter, Michael John Bergmann, Rebecca McDonald, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
-
Publication number: 20210128935Abstract: Methods and related devices for impinging light on tissue, for example within a body of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: December 10, 2020Publication date: May 6, 2021Inventors: Nathan Stasko, David T. Emerson, Adam Cockrell, F. Neal Hunter, Michael John Bergmann, Rebecca McDonald, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
-
Publication number: 20210128937Abstract: Methods and related devices for impinging light on tissue, for example within a body of a patient, to induce various biological effects are disclosed. Biological effects may include at least one of inactivating and/or inhibiting growth of one or more pathogens, upregulating a local immune response, stimulating enzymatic generation of nitric oxide to increase endogenous stores of nitric oxide, releasing nitric oxide from endogenous stores of nitric oxide, and inducing an anti-inflammatory effect. Wavelengths of light are selected based on intended biological effects for one or more of targeted tissue types and targeted pathogens. Light treatments may provide multiple pathogenic biological effects, either with light of a single wavelength or with light having multiple wavelengths. Devices and methods for light treatments are disclosed that provide light doses for inducing biological effects on various targeted pathogens and targeted tissues with increased efficacy and reduced cytotoxicity.Type: ApplicationFiled: January 13, 2021Publication date: May 6, 2021Inventors: Nathan Stasko, David T. Emerson, Adam Cockrell, F. Neal Hunter, Michael John Bergmann, Rebecca McDonald, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
-
Publication number: 20200353283Abstract: Modulated light therapy devices for treatment of dermatological disorders of the scalp are provided. An exemplary device includes a flexible printed circuit board (FPCB) supporting at least one light emitting device having an emitter height. The FPCB includes multiple interconnected panels and bending regions defined in and between at least some of the interconnected panels as to allow the FPCB to be configured in a concave shape to cover at least a portion of a cranial vertex of the patient. At least one light-transmissive layer proximate to the FPCB is configured to transmit (e.g., incoherent) light emissions generated by at least one light emitting device. At least one standoff is configured to be arranged between the FPCB and the scalp of the patient, wherein the at least one standoff includes a standoff height that exceeds the emitter height.Type: ApplicationFiled: May 27, 2020Publication date: November 12, 2020Inventors: Nicholas William Medendorp, JR., Gerald H. Negley, Matthew Carl Reynolds, James Michael Lay
-
Publication number: 20200298014Abstract: Systems and methods for phototherapeutic modulation of nitric oxide in mammalian tissue include use of a first wavelength and first radiant flux of light to stimulate enzymatic generation of nitric oxide, and use of a second wavelength and second radiant flux of light to stimulate release of nitric oxide from endogenous stores of nitric oxide. Pulsed light and/or partially non-overlapping light impingement windows may be used. Non-coherent light impinged on tissue may include a peak wavelength in a range of from 410 nm to 440 nm in the absence of light emissions having a peak wavelength of from 600 nm to 900 nm.Type: ApplicationFiled: June 10, 2020Publication date: September 24, 2020Inventors: Nathan Stasko, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
-
Publication number: 20200243492Abstract: A light emitter, comprising light emitting devices mechanically interconnected by a common substrate and an interconnection submount. The light emitting devices are electrically interconnected by the submount to provide an array of serially connected subsets of light emitting devices, each subset comprising at least three light emitting devices electrically connected in parallel. Also, a light emitter comprising first light emitting devices mechanically interconnected by a first common substrate, and second light emitting devices mechanically interconnected by a second common substrate, the first light emitting devices being mechanically and electrically connected to the second light emitting devices.Type: ApplicationFiled: February 28, 2020Publication date: July 30, 2020Inventors: Gerald H. Negley, Antony Paul Van de Ven
-
Publication number: 20200222714Abstract: Systems and methods for phototherapeutic modulation of nitric oxide in mammalian tissue include use of a first wavelength and first radiant flux of light to stimulate enzymatic generation of nitric oxide, and use of a second wavelength and second radiant flux of light to stimulate release of nitric oxide from endogenous stores of nitric oxide. Pulsed light and/or partially non-overlapping light impingement windows may be used. Non-coherent light impinged on tissue may include a peak wavelength in a range of from 410 nm to 440 nm in the absence of light emissions having a peak wavelength of from 600 nm to 900 nm.Type: ApplicationFiled: December 10, 2019Publication date: July 16, 2020Inventors: Nathan Stasko, Nicholas William Medendorp, JR., Gerald H. Negley, Katelyn P. Reighard
-
Patent number: 10688315Abstract: Modulated light therapy devices for treatment of dermatological disorders of the scalp are provided. An exemplary device includes a flexible printed circuit board (FPCB) supporting at least one light emitting device having an emitter height. The FPCB includes multiple interconnected panels and bending regions defined in and between at least some of the interconnected panels as to allow the FPCB to be configured in a concave shape to cover at least a portion of a cranial vertex of the patient. At least one light-transmissive layer proximate to the FPCB is configured to transmit (e.g., incoherent) light emissions generated by at least one light emitting device. At least one standoff is configured to be arranged between the FPCB and the scalp of the patient, wherein the at least one standoff includes a standoff height that exceeds the emitter height.Type: GrantFiled: July 28, 2016Date of Patent: June 23, 2020Assignee: Know Bio, LLCInventors: Nicholas William Medendorp, Jr., Gerald H. Negley, Matthew Carl Reynolds, James Michael Lay
-
Patent number: RE48489Abstract: In one embodiment, a lamp comprises an optically transmissive enclosure. An LED array is disposed in the optically transmissive enclosure operable to emit light when energized through an electrical connection. A gas is contained in the enclosure to provide thermal coupling to the LED array. The gas may include oxygen.Type: GrantFiled: February 26, 2018Date of Patent: March 30, 2021Assignee: IDEAL Industries Lighting LLCInventors: Christopher P. Hussell, John Adam Edmond, Gerald H. Negley, Curt Progl, Mark Edmond, Praneet Athalye, Charles M. Swoboda, Antony Paul van de Ven, Paul Kenneth Pickard, Bart P. Reier, James Michael Lay, Peter E. Lopez