Patents by Inventor Gerald Koelsch

Gerald Koelsch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7829669
    Abstract: Methods for the production of purified, catalytically active, recombinant memapsin 2 have been developed. The substrate and subsite specificity of the catalytically active enzyme have been determined. The substrate and subsite specificity information was used to design substrate analogs of the natural memapsin 2 substrate that can inhibit the function of memapsin 2. The substrate analogs are based on peptide sequences, shown to be related to the natural peptide substrates for memapsin 2. The substrate analogs contain at least one analog of an amide bond which is not capable of being cleaved by memapsin 2. Processes for the synthesis of two substrate analogues including isosteres at the sites of the critical amino acid residues were developed and the substrate analogues, OMR99-1 and OM99-2, were synthesized. OM99-2 is based on an octapeptide Glu-Val-Asn-Leu-Ala-Ala-Glu-Phe (SEQ ID NO:28) with the Leu-Ala peptide bond substituted by a transition-state isostere hydroxyethylene group (FIG. 1).
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: November 9, 2010
    Assignees: Oklahoma Medical Research Foundation, The Board of Trustees of the University of Illinois
    Inventors: Gerald Koelsch, Jordan J. N. Tang, Lin Hong, Arun K. Ghosh, Xinli Lin
  • Publication number: 20080112946
    Abstract: Methods for the production of purified, catalytically active, recombinant memapsin 2 have been developed. The substrate and subsite specificity of the catalytically active enzyme have been determined. The substrate and subsite specificity information was used to design substrate analogs of the natural memapsin 2 substrate that can inhibit the function of memapsin 2. The substrate analogs are based on peptide sequences, shown to be related to the natural peptide substrates for memapsin 2. The substrate analogs contain at least one analog of an amide bond which is not capable of being cleaved by memapsin 2. Processes for the synthesis of two substrate analogues including isosteres at the sites of the critical amino acid residues were developed and the substrate analogues, OMR99-1 and OM99-2, were synthesized. OM99-2 is based on an octapeptide Glu-Val-Asn-Leu-Ala-Ala-Glu-Phe (SEQ ID NO:28) with the Leu-Ala peptide bond substituted by a transition-state isostere hydroxyethylene group (FIG. 1).
    Type: Application
    Filed: August 3, 2007
    Publication date: May 15, 2008
    Inventors: Gerald Koelsch, Jordan J. N. Tang, Lin Hong, Arun K. Ghosh, Xinli Lin
  • Publication number: 20060234944
    Abstract: Compounds inhibit memapsin 2 ?-secretase activity and selectively inhibit memapsin 2 ?-secretase activity relative to memapsin 1 ?-secretase activity. The compounds are employed in methods to inhibit memapsin 2 ?-secretase activity, in the treatment of Alzheimer's disease, in the inhibition of hydrolysis of a ?-secretase site of a ?-amyloid precursor protein and to decrease ?-amyloid protein in in vitro samples and in mammals. Proteins of memapsin 2 associated with compounds of the invention are crystallized.
    Type: Application
    Filed: October 23, 2002
    Publication date: October 19, 2006
    Applicants: Oklahoma Medical Reseach Foundation, The Board of Trustees of the University of Illinois
    Inventors: Arun Ghosh, Jordan Tang, Geoffrey Bilcer, Wanpin Chang, Lin Hong, Gerald Koelsch, Jeff Loy, Robert Turner III
  • Publication number: 20040220079
    Abstract: Methods for the production of purified, catalytically active, recombinant memapsin 2 have been developed. The substrate and subsite specificity of the catalytically active enzyme have been determined. The substrate and subsite specificity information was used to design substrate analogs of the natural memapsin 2 substrate that can inhibit the function of memapsin 2. The substrate analogs are based on peptide sequences, shown to be related to the natural peptide substrates for memapsin 2. The substrate analogs contain at least one analog of an amide bond which is not capable of being cleaved by memapsin 2. Processes for the synthesis of two substrate analogues including isosteres at the sites of the critical amino acid residues were developed and the substrate analogues, OMR99-1 and OM99-2, were synthesized. OM99-2 is based on an octapeptide Glu-Val-Asn-Leu-Ala-Ala-Glu-Phe (SEQ ID NO:28) with the Leu-Ala peptide bond substituted by a transition-state isostere hydroxyethylene group (FIG. 1).
    Type: Application
    Filed: February 6, 2004
    Publication date: November 4, 2004
    Applicants: Oklahoma Medical Research Foundation, The Board of Trustees of the University of Illinois
    Inventors: Gerald Koelsch, Jordan J.N. Tang, Lin Hong, Arun K. Ghosh
  • Publication number: 20030092629
    Abstract: Methods for the production of purified, catalytically active, recombinant memapsin 2 have been developed-, The substrate and subsite specificity of the catalytically active enzyme have been determined by a method which determines the initial hydrolysis rate of the substrates by using MALDI-TOF/MS. Alternatively, the subsite specificity of memapsin can be determined by probing a library of inhibitors with memapsin 2 and subsequently detecting the bound memapsin 2 with an antibody raised to memapsin 2 and an alkaline phosphatase conjugated secondary antibody. The substrate and subsite specificity information was used to design substrate analogs of the natural memapsin 2 substrate that can inhibit the function of memapsin 2. The substrate analogs are based on peptide sequences, shown to be related to the natural peptide substrates for memapsin 2. The substrate analogs contain at least one analog of an amide bond which is not capable of being cleaved by memapsin 2.
    Type: Application
    Filed: December 28, 2001
    Publication date: May 15, 2003
    Applicant: Oklahoma Medical Research Foundation
    Inventors: Jordan J. N. Tang, Gerald Koelsch, Arun K. Ghosh
  • Patent number: 6545127
    Abstract: Methods for the production of purified, catalytically active, recombinant memapsin 2 have been developed. The substrate and subsite specificity of the catalytically active enzyme have been determined. The substrate and subsite specificity information was used to design substrate analogs of the natural memapsin 2 substrate that can inhibit the function of memapsin 2. The substrate analogs are based on peptide sequences, shown to be related to the natural peptide substrates for memapsin 2. The substrate analogs contain at least one analog of an amide bond which is not capable of being cleaved by memapsin 2. Processes for the synthesis of two substrate analogues including isosteres at the sites of the critical amino acid residues were developed and the substrate analogues, OMR99-1 and OM99-2, were synthesized. OM99-2 is based on an octapeptide Glu-Val-Asn-Leu-Ala-Ala-Glu-Phe (SEQ ID NO:28) with the Leu-Ala peptide bond substituted by a transition-state isostere hydroxyethylene group (FIG. 1).
    Type: Grant
    Filed: June 27, 2000
    Date of Patent: April 8, 2003
    Assignee: Oklahoma Medical Research Foundation
    Inventors: Jordan J. N. Tang, Xinli Lin, Gerald Koelsch, Lin Hong
  • Publication number: 20020164760
    Abstract: Methods for the production of purified, catalytically active, recombinant memapsin 2 have been developed. The substrate and subsite specificity of the catalytically active enzyme have been determined. The substrate and subsite specificity information was used to design substrate analogs of the natural memapsin 2 substrate that can inhibit the function of memapsin 2. The substrate analogs are based on peptide sequences, shown to be related to the natural peptide substrates for memapsin 2. The substrate analogs contain at least one analog of an amide bond which is not capable of being cleaved by memapsin 2. Processes for the synthesis of two substrate analogues including isosteres at the sites of the critical amino acid residues were developed and the substrate analogues, OMR99-1 and OM99-2, were synthesized. OM99-2 is based on an octapeptide Glu-Val-Asn-Leu-Ala-Ala-Glu-Phe (SEQ ID NO:28) with the Leu-Ala peptide bond substituted by a transition-state isostere hydroxyethylene group (FIG. 1).
    Type: Application
    Filed: February 28, 2001
    Publication date: November 7, 2002
    Applicant: Oklahoma Medical Research Foundation
    Inventors: Xinli Lin, Gerald Koelsch, Jordan J.N. Tang
  • Publication number: 20020115600
    Abstract: Methods for the production of purified, catalytically active, recombinant memapsin 2 have been developed. The substrate and subsite specificity of the catalytically active enzyme have been determined. The substrate and subsite specificity information was used to design substrate analogs of the natural memapsin 2 substrate that can inhibit the function of memapsin 2. The substrate analogs are based on peptide sequences, shown to be related to the natural peptide substrates for memapsin 2. The substrate analogs contain at least one analog of an amide bond which is not capable of being cleaved by memapsin 2. Processes for the synthesis of two substrate analogues including isosteres at the sites of the critical amino acid residues were developed and the substrate analogues, OMR99-1 and OM99-2, were synthesized. OM99-2 is based on an octapeptide Glu-Val-Asn-Leu-Ala-Ala-Glu-Phe (SEQ ID NO:28) with the Leu-Ala peptide bond substituted by a transition-state isostere hydroxyethylene group (FIG. 1).
    Type: Application
    Filed: April 30, 2001
    Publication date: August 22, 2002
    Applicant: Oklahoma Medical Research Foundation
    Inventors: Gerald Koelsch, Jordan J.N. Tang, Lin Hong, Arun K. Ghosh
  • Publication number: 20020049303
    Abstract: Methods for the production of purified, catalytically active, recombinant memapsin 2 have been developed. The substrate and subsite specificity of the catalytically active enzyme have been determined. The substrate and subsite specificity information was used to design substrate analogs of the natural memapsin 2 substrate that can inhibit the function of memapsin 2. The substrate analogs are based on peptide sequences, shown to be related to the natural peptide substrates for memapsin 2. The substrate analogs contain at least one analog of an amide bond which is not capable of being cleaved by memapsin 2. Processes for the synthesis of two substrate analogs including isosteres at the sites of the critical amino acid residues were developed and the substrate analogs, OMR99-1 and OM99-2, were synthesized. OM99-2 is based on an octapeptide Glu-Val-Asn-Leu-Ala-Ala-Glu-Phe (SEQ ID NO:28) with the Leu-Ala peptide bond substituted by a transition-state isostere hydroxyethylene group (FIG. 1).
    Type: Application
    Filed: February 28, 2001
    Publication date: April 25, 2002
    Inventors: Jordan J. N. Tang, Xinli Lin, Gerald Koelsch, Lin Hong