Patents by Inventor Gerald L. Hillier

Gerald L. Hillier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10697306
    Abstract: A core structure (10) includes a first core element (16) including a leading edge section (30), a tip section (32), and a turn section (34) joining the leading edge and tip sections (30, 32). The first core element (16) is adapted to be used to form a leading edge cooling circuit (102) in a gas turbine engine airfoil (100). The leading edge cooling circuit (102) includes a cooling fluid passage (104) having a leading edge portion (106) formed by the first core element leading edge section (30), a tip portion (108) formed by the first core element tip section (32), and a turn portion (110) formed by the first core element turn section (34). Each of the leading edge portion (106), the tip portion (108), and the turn portion (110) of the cooling fluid passage (104) are formed concurrently in the airfoil (100) by the first core element (16).
    Type: Grant
    Filed: September 18, 2014
    Date of Patent: June 30, 2020
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Wayne J. McDonald, Erik Johnson, Anthony Waywood, Eric Schroeder, Zhengxiang Pu
  • Publication number: 20180298763
    Abstract: The present disclosure provides a turbine blade (12) comprising a leading edge cooling circuit (30), a trailing edge cooling circuit (34), a mid-section cooling circuit (32) comprising a first channel (32a), an intermediate channel (32b), and a final channel (32c), and an axial tip cooling circuit (56). The leading edge, mid-section, and trailing edge cooling circuits (30, 32, 34) each receive a cooling airflow (CF) from a cooling air supply. A radially outer portion of each of the leading edge and mid-section cooling circuits (30, 32) further comprises at least one outlet (62, 64) in fluid communication with the axial tip cooling circuit (56) such that substantially all of a leading edge cooling airflow (LEF) exiting the leading edge cooling circuit (30) and substantially all of a mid-section cooling airflow (MSF) exiting the mid-section cooling circuit (32) is directed to the axial tip cooling circuit (56).
    Type: Application
    Filed: November 11, 2014
    Publication date: October 18, 2018
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Eric Schroeder, Erik Johnson, Dustin Muller
  • Patent number: 9840930
    Abstract: An airfoil (10) for a gas turbine engine in which the airfoil (10) includes an internal cooling system (14) with one or more internal cavities (16) having an insert (18) contained therein that forms nearwall cooling channels (20) having enhanced flow patterns is disclosed. The flow of cooling fluids in the nearwall cooling channels (20) may be controlled via a plurality of cooling fluid flow controllers (22) extending from the outer wall (24) forming the generally hollow elongated airfoil (26). The cooling fluid flow controllers (22) may be collected into spanwise extending rows (28), and the internal cooling system (14) may include one or more bypass flow reducers (30) extending from the insert (18) toward the outer wall (24) to direct the cooling fluids through the channels (20) created by the cooling fluid flow controllers (22), thereby increasing the effectiveness of the internal cooling system (14).
    Type: Grant
    Filed: September 4, 2014
    Date of Patent: December 12, 2017
    Assignee: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Wayne J. McDonald, Mohamed Abdullah, Eric Schroeder, Ralph W. Matthews, Zhengxiang Pu
  • Publication number: 20170275998
    Abstract: A core structure (10) includes a first core element (16) including a leading edge section (30), a tip section (32), and a turn section (34) joining the leading edge and tip sections (30, 32). The first core element (16) is adapted to be used to form a leading edge cooling circuit (102) in a gas turbine engine airfoil (100). The leading edge cooling circuit (102) includes a cooling fluid passage (104) having a leading edge portion (106) formed by the first core element leading edge section (30), a tip portion (108) formed by the first core element tip section (32), and a turn portion (110) formed by the first core element turn section (34). Each of the leading edge portion (106), the tip portion (108), and the turn portion (110) of the cooling fluid passage (104) are formed concurrently in the airfoil (100) by the first core element (16).
    Type: Application
    Filed: September 18, 2014
    Publication date: September 28, 2017
    Applicant: Siemens Aktiengesellschaft
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Wayne J. McDonald, Erik Johnson, Anthony Waywood, Eric Schroeder, Zhengxiang Pu
  • Publication number: 20170268358
    Abstract: An airfoil (10) for a gas turbine engine in which the airfoil (10) includes an internal cooling system (14) with one or more internal cavities (16) having an insert (18) contained therein that forms nearwall cooling channels (20) having enhanced flow patterns is disclosed. The flow of cooling fluids in the nearwall cooling channels (20) may be controlled via a plurality of cooling fluid flow controllers (22) extending from the outer wall (24) forming the generally hollow elongated airfoil (26). The cooling fluid flow controllers (22) may be collected into spanwise extending rows (28), and the internal cooling system (14) may include one or more bypass flow reducers (30) extending from the insert (18) toward the outer wall (24) to direct the cooling fluids through the channels (20) created by the cooling fluid flow controllers (22), thereby increasing the effectiveness of the internal cooling system (14).
    Type: Application
    Filed: September 4, 2014
    Publication date: September 21, 2017
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Wayne J. McDonald, Mohamed Abdullah, Eric Schroeder, Ralph W. Matthews, Zhengxiang Pu
  • Publication number: 20150204197
    Abstract: An airfoil cooling arrangement (12), including: a leading edge chamber (54) configured to cool an interior surface (68) of an airfoil; and an impingement orifice (60) configured to direct an impingement jet (64) toward an impingement location (66) disposed on the interior surface and offset from a camber line (28) of the airfoil The airfoil cooling arrangement is effective to guide post impingement cooling fluid along the interior surface, through a leading portion (76) of the leading edge chamber, and then back toward a trailing edge (22) of the airfoil in a helical motion (114).
    Type: Application
    Filed: January 23, 2014
    Publication date: July 23, 2015
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Eric Schroeder, Erik Johnson
  • Publication number: 20150198050
    Abstract: An airfoil for a gas turbine engine in which the airfoil includes an internal cooling system formed from one or more midchord cooling channels with a corrugated insert positioned therein and creating nearwall leading edge, pressure side and suction side nearwall cooling channels.
    Type: Application
    Filed: January 15, 2014
    Publication date: July 16, 2015
    Applicant: Siemens Energy, Inc.
    Inventors: Ching-Pang Lee, Jae Y. Um, Gerald L. Hillier, Eric Schroeder, Mohamed Abdullah
  • Patent number: 9061349
    Abstract: An investment casting method for a cast ceramic core (110), including an airfoil portion (116) shaped to define an inner surface (56) of an airfoil (52) of a vane segment (50) and an integral shell portion (122) having a backside-shaping surface (120) shaped to define a backside surface (68) of a shroud (62) of the vane segment. The backside-shaping surface has a higher elevation (132) and a lower elevation (134). The higher elevation is set apart from a nearest point (138) on the airfoil portion by the lower elevation. The airfoil portion and the shell portion are cast as a monolithic body during a single casting pour.
    Type: Grant
    Filed: November 7, 2013
    Date of Patent: June 23, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ching-Pang Lee, Gerald L. Hillier, Jae Y. Um, Gm Salam Azad
  • Publication number: 20150122450
    Abstract: A cast ceramic core (110), including: an airfoil portion (116) shaped to define an inner surface (56) of an airfoil (52) of a vane segment (50); and a shell portion (122) having a backside-shaping surface (120) shaped to define a backside surface (68) of a shroud (62) of the vane segment. The backside-shaping surface has a higher elevation (132) and a lower elevation (134). The higher elevation is set apart from a nearest point (138) on the airfoil portion by the lower elevation. The airfoil portion and the shell portion are cast as a monolithic body during a single casting pour.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventors: Ching-Pang Lee, Gerald L. Hillier, Jae Y. UM, Gm Salam Azad
  • Publication number: 20150122446
    Abstract: An investment casting method for a cast ceramic core (110), including an airfoil portion (116) shaped to define an inner surface (56) of an airfoil (52) of a vane segment (50) and an integral shell portion (122) having a backside-shaping surface (120) shaped to define a backside surface (68) of a shroud (62) of the vane segment. The backside-shaping surface has a higher elevation (132) and a lower elevation (134). The higher elevation is set apart from a nearest point (138) on the airfoil portion by the lower elevation. The airfoil portion and the shell portion are cast as a monolithic body during a single casting pour.
    Type: Application
    Filed: November 7, 2013
    Publication date: May 7, 2015
    Inventors: Ching-Pang Lee, Gerald L. Hillier, Jae Y. Um, Gm Salam Azad