Patents by Inventor Gerald M. Olderman

Gerald M. Olderman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9873751
    Abstract: This invention pertains to a polymeric composition and an antimicrobial composition, each comprising a superabsorbent polymer (SAP), such as used in diapers and sanitary napkins, and peroxide. The superabsorbent material can be made by the process of treating a preformed SAP, such as a crosslinked polyacrylate salt, with a treatment solution comprising hydrogen peroxide dissolved in water, followed by drying. The resulting superabsorbent material has strong antimicrobial activity. Optionally, the treatment solution may also contain a metal salt, including those of zinc, zirconium, and magnesium.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: January 23, 2018
    Assignee: Quick-Med Technologies, Inc.
    Inventors: William Toreki, Susan Leander, Gerald M. Olderman
  • Publication number: 20150071870
    Abstract: This invention pertains to a polymeric composition and an antimicrobial composition, each comprising a superabsorbent polymer (SAP), such as used in diapers and sanitary napkins, and peroxide. The superabsorbent material can be made by the process of treating a preformed SAP, such as a crosslinked polyacrylate salt, with a treatment solution comprising hydrogen peroxide dissolved in water, followed by drying. The resulting superabsorbent material has strong antimicrobial activity. Optionally, the treatment solution may also contain a metal salt, including those of zinc, zirconium, and magnesium.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Applicant: Quick-Med Technologies, Inc.
    Inventors: William Toreki, Susan Leander, Gerald M. Olderman
  • Patent number: 8926999
    Abstract: This invention pertains to method for imparting a durable antimicrobial activity to substrates, particularly textiles. An acetate-free metal and peroxide antimicrobial treatment formulation is prepared from a metal derivative, hydrogen peroxide and a source of hydroxide ion. The substrate is treated with the composition and dried to afford the treated substrate with antimicrobial activity. Zinc salts, ions, or complexes are preferred.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: January 6, 2015
    Assignee: Quick-Med Technologies, Inc.
    Inventors: William Toreki, Albina Mikhaylova, Susan Leander, Bernd Liesenfeld, Gerald M. Olderman
  • Patent number: 8545862
    Abstract: Anionic polyelectrolytes are used as binding agents to reduce the solubility of cationic antimicrobial polyelectrolytes. Ionic attraction between the anionic stabilizing polyelectrolytes and the antimicrobial cationic polyelectrolytes results in formation of a polyelectrolyte complex (PEC). A treatment liquid comprising a stable colloid, suspension, dispersion, solution, coacervate, or emulsion of the PEC in an aqueous carrier is used to treat an article, thus coating, infiltrating, or infusing the PEC onto or into the article. Subsequent drying results in an antimicrobial article wherein the PEC is bound to the article and is significantly less prone, relative to either of the component polyelectrolytes, to being washed, leached, leaked, extracted, or migrated from the antimicrobial article during use, or when exposed to aqueous fluids or solvents.
    Type: Grant
    Filed: July 2, 2010
    Date of Patent: October 1, 2013
    Assignee: Quick-Med Technologies, Inc.
    Inventors: William Toreki, David N. Moore, Bernd Liesenfeld, Albina Mikhaylova, Gerald M. Olderman
  • Publication number: 20130011491
    Abstract: This invention pertains to method for imparting a durable antimicrobial activity to substrates, particularly textiles. An acetate-free metal and peroxide antimicrobial treatment formulation is prepared by adjusting the pH of a mixture of a metal salt in aqueous hydrogen peroxide to about 7.5. The substrate is treated with the composition and dried to afford the treated substrate with antimicrobial activity. Zinc salts, ions, or complexes are preferred.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: QUICK-MED TECHNOLOGIES, INC.
    Inventors: William Toreki, Albina Mikhaylova, Susan Leander, Bernd Liesenfeld, Gerald M. Olderman
  • Patent number: 8277827
    Abstract: This invention pertains to method for imparting a durable antimicrobial activity to substrates, particularly textiles. An acetate-free metal and peroxide antimicrobial treatment formulation is prepared by adjusting the pH of a mixture of a metal salt in aqueous hydrogen peroxide to about 7.5. The substrate is treated with the composition and dried to afford the treated substrate with antimicrobial activity. Zinc salts, ions, or complexes are preferred.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: October 2, 2012
    Assignee: Quick-Med Technologies, Inc.
    Inventors: William Toreki, Albina Mikhaylova, Susan Leander, Bernd Liesenfeld, Gerald M. Olderman
  • Publication number: 20110171280
    Abstract: This invention pertains to method for imparting a durable antimicrobial activity to substrates, particularly textiles. An acetate-free metal and peroxide antimicrobial treatment formulation is prepared by adjusting the pH of a mixture of a metal salt in aqueous hydrogen peroxide to about 7.5. The substrate is treated with the composition and dried to afford the treated substrate with antimicrobial activity. Zinc salts, ions, or complexes are preferred.
    Type: Application
    Filed: December 17, 2010
    Publication date: July 14, 2011
    Applicant: QUICK-MED TECHNOLOGIES, INC.
    Inventors: William Toreki, Albina Mikhaylova, Susan Leander, Bernd Liesenfeld, Gerald M. Olderman
  • Publication number: 20100291169
    Abstract: Anionic polyelectrolytes are used as binding agents to reduce the solubility of cationic antimicrobial polyelectrolytes. Ionic attraction between the anionic stabilizing polyelectrolytes and the antimicrobial cationic polyelectrolytes results in formation of a polyelectrolyte complex (PEC). A treatment liquid comprising a stable colloid, suspension, dispersion, solution, coacervate, or emulsion of the PEC in an aqueous carrier is used to treat an article, thus coating, infiltrating, or infusing the PEC onto or into the article. Subsequent drying results in an antimicrobial article wherein the PEC is bound to the article and is significantly less prone, relative to either of the component polyelectrolytes, to being washed, leached, leaked, extracted, or migrated from the antimicrobial article during use, or when exposed to aqueous fluids or solvents.
    Type: Application
    Filed: July 2, 2010
    Publication date: November 18, 2010
    Applicant: QUICK-MED TECHNOLOGIES, INC.
    Inventors: William Toreki, David N. Moore, Bernd Liesenfeld, Albina Mikhaylova, Gerald M. Olderman
  • Publication number: 20100247615
    Abstract: This invention pertains to a polymeric composition and an antimicrobial composition, each comprising a superabsorbent polymer (SAP), such as used in diapers and sanitary napkins, and peroxide. The superabsorbent material can be made by the process of treating a preformed SAP, such as a crosslinked polyacrylate salt, with a treatment solution comprising hydrogen peroxide dissolved in water, followed by drying. The resulting superabsorbent material has strong antimicrobial activity. Optionally, the treatment solution may also contain a metal salt, including those of zinc, zirconium, and magnesium.
    Type: Application
    Filed: June 9, 2010
    Publication date: September 30, 2010
    Applicant: QUICK-MED TECHNOLOGIES, INC.
    Inventors: William Toreki, Susan Leander, Gerald M. Olderman
  • Patent number: 7709694
    Abstract: This invention relates to methods and compositions for materials having a non-leaching coating that has antimicrobial properties. The coating is applied to substrates such as gauze-type wound dressings. Covalent, non-leaching, non-hydrolyzable bonds are formed between the substrate and the polymer molecules that form the coating. A high concentration of anti-microbial groups on multi-length polymer chains and relatively long average chain lengths, contribute to an absorbent or superabsorbent surface with a high level antimicrobial effect.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 4, 2010
    Assignees: Quick-Med Technologies, Inc., University of Florida Research Foundation, Inc.
    Inventors: Christopher D. Batich, Gregory Schultz, Bruce A. Mast, Gerald M. Olderman, David S. Lerner, William Toreki
  • Patent number: 7045673
    Abstract: Absorbent dressings, including highly-absorbent dressings having antimicrobial polymer attached thereto via non-siloxane bonds are disclosed. Bandages (i.e. wound dressing), sanitary napkins and the like are useful applications for the intrinsically bactericidal absorbent dressings whose method of manufacture and use are disclosed and claimed.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: May 16, 2006
    Assignees: Quick-Med Technologies, Inc., University of Florida Research Foundation, Inc.
    Inventors: Christopher D. Batich, Bruce A Mast, Gregory Schultz, Gerald M. Olderman, David S. Lerner
  • Publication number: 20020177828
    Abstract: This invention relates to methods and compositions for materials having a non-leaching coating that has antimicrobial properties. The coating is applied to substrates such as gauze-type wound dressings. Covalent, non-leaching, non-hydrolyzable bonds are formed between the substrate and the polymer molecules that form the coating. A high concentration of anti-microbial groups on multi-length polymer chains and relatively long average chain lengths, contribute to an absorbent or superabsorbent surface with a high level antimicrobial effect.
    Type: Application
    Filed: September 28, 2001
    Publication date: November 28, 2002
    Inventors: Christopher D. Batich, Gregory Schultz, Bruce A. Mast, Gerald M. Olderman, David S. Lerner, William Toreki