Patents by Inventor Gerard D Agnew

Gerard D Agnew has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110129934
    Abstract: A method for inferring temperature in an enclosed volume containing a fuel/oxidant mixture, the method comprises placing at least one wire in the enclosed volume. The at least one wire having an identifiable property wherein the identifiable property of the at least one wire changes from a first identifiable state at a temperature below the auto-ignition temperature of the fuel/oxidant mixture to a second identifiable state at a temperature above the auto-ignition temperature of the fuel/oxidant mixture, and determining if the identifiable property of the at least one wire has changed from the first identifiable state to the second identifiable state and hence if the temperature in the enclosed volume is above the auto-ignition temperature of the fuel/oxidant mixture.
    Type: Application
    Filed: July 10, 2009
    Publication date: June 2, 2011
    Applicant: ROLLS-ROYCE FUEL CELL SYSTEMS LIMITED
    Inventor: Gerard D. Agnew
  • Patent number: 7867301
    Abstract: A pre-reformer comprises a non-electrically conducting gas tight duct and an electrically conducting wire arranged in the duct. The electrically conducting wire is electrically isolated from the duct. The duct has an inlet for receiving a hydrocarbon fuel at a first end and an outlet for supplying a pre-reformed hydrocarbon fuel at a second end. At least the inner surface of the duct is chemically inert with respect to the hydrocarbon fuel. An electrical power supply is electrically connected to the electrically conducting wire and a control means controls the supply of electrical current through the electrically conducting wire to provide thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: January 11, 2011
    Assignee: Rolls-Royce plc
    Inventors: Gerard D Agnew, Robert H Cunningham, Gary J Saunders
  • Publication number: 20100203413
    Abstract: A solid oxide fuel cell comprises a porous anode electrode, a dense non-porous electrolyte and a porous cathode electrode. The anode electrode comprises a first member and a plurality of parallel plate members extending from the first member. The cathode electrode comprises a second member and a plurality of parallel plate members extending from the second member. The plate members of the cathode electrode inter-digitate with the plate members of the anode electrode and the electrolyte fills the spaces between the first and second members and the parallel plate members of the anode electrode and the cathode electrode.
    Type: Application
    Filed: July 10, 2008
    Publication date: August 12, 2010
    Applicant: ROLLS-ROYCE FUEL CELL SYSTEMS LIMITED
    Inventors: Gerard D. Agnew, Peter J. Dixon
  • Patent number: 7749465
    Abstract: A reformer module (10) comprises a hollow support member (12) having at least one passage (14) extending longitudinally therethrough. The hollow support member (14) has an external surface (20), a barrier layer (22) arranged on at least a portion of the external surface (20) of the hollow support member (12), a catalyst layer (24) arranged on the barrier layer (22) and a sealing layer (26) arranged on the catalyst layer (24) and the external surface (20) of the hollow support member (12) other than the at least a portion of the external surface of the hollow support member (12). By providing the barrier layer (22) and the catalyst layer (24) on the exterior surface (20) of the hollow support member (12), the distribution of the barrier layer (22) and/or the catalyst layer (24) may be more precisely controlled and thus a non-uniform distribution of barrier layer (22) and/or catalyst layer (24) may be achieved.
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: July 6, 2010
    Assignee: Rolls-Royce plc
    Inventors: Gerard D. Agnew, Robert H. Cunningham, Philip D. Butler, Robert D. Collins
  • Publication number: 20100135872
    Abstract: A reformer module (10) comprises a hollow support member (12) having at least one passage (14) extending longitudinally therethrough. The hollow support member (14) has an external surface (20), a barrier layer (22) arranged on at least a portion of the external surface (20) of the hollow support member (12), a catalyst layer (24) arranged on the barrier layer (22) and a sealing layer (26) arranged on the catalyst layer (24) and the external surface (20) of the hollow support member (12) other than the at least a portion of the external surface of the hollow support member (12). By providing the barrier layer (22) and the catalyst layer (24) on the exterior surface (20) of the hollow support member (12), the distribution of the barrier layer (22) and/or the catalyst layer (24) may be more precisely controlled and thus a non-uniform distribution of barrier layer (22) and/or catalyst layer (24) may be achieved.
    Type: Application
    Filed: January 19, 2010
    Publication date: June 3, 2010
    Inventors: Gerard D Agnew, Robert H Cunningham, Philip D Butler, Robert D Collins
  • Patent number: 7707817
    Abstract: A fuel processor (10) comprises a supply of natural gas (12) and a compressor (14), which compresses the natural gas and supplies the natural gas to a partial oxidation reactor (16). A supply of oxygen (20) supplies the oxygen to the partial oxidation reactor (16). The partial oxidation reactor (16) partially reacts the natural gas and the oxygen to form a mixture comprising hydrogen and carbon dioxide. The partial oxidation reactor (16) supplies the mixture of hydrogen and carbon dioxide to a turbine (20). The turbine (20) is arranged to drive the compressor (14). The turbine (20) expands and cools the mixture of hydrogen and carbon dioxide and supplies the mixture of hydrogen and carbon dioxide to a fuel cell stack (22) requiring hydrogen and/or carbon dioxide.
    Type: Grant
    Filed: January 31, 2006
    Date of Patent: May 4, 2010
    Assignee: Rolls-Royce, PLLC
    Inventors: Gerard D Agnew, Ritindar Singh
  • Publication number: 20100055519
    Abstract: A pre-reformer (10) comprises a non-electrically conducting gas tight duct (12) and an electrically conducting wire (14) arranged in the duct (12). The electrically conducting wire (14) is electrically isolated from the duct (12). The duct (12) has an inlet (16) for receiving a hydrocarbon fuel at a first end (18) and an outlet (20) for supplying a pre-reformed hydrocarbon fuel at a second end (22). At least the inner surface (24) of the duct (12) is chemically inert with respect to the hydrocarbon fuel. An electrical power supply (26) is electrically connected to the electrically conducting wire (14) and a control means (28) controls the supply of electrical current through the electrically conducting wire (14) to maintain the electrically conducting wire (14) at a temperature to provide selective thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
    Type: Application
    Filed: October 22, 2009
    Publication date: March 4, 2010
    Inventors: Gerard D. Agnew, Robert H. Cunningham, Gary J. Saunders
  • Patent number: 7625528
    Abstract: A pre-reformer (10) comprises a non-electrically conducting gas tight duct (12) and an electrically conducting wire (14) arranged in the duct (12). The electrically conducting wire (14) is electrically isolated from the duct (12). The duct (12) has an inlet (16) for receiving a hydrocarbon fuel at a first end (18) and an outlet (20) for supplying a pre-reformed hydrocarbon fuel at a second end (22). At least the inner surface (24) of the duct (12) is chemically inert with respect to the hydrocarbon fuel. An electrical power supply (26) is electrically connected to the electrically conducting wire (14) and a control means (28) controls the supply of electrical current through the electrically conducting wire (14) to maintain the electrically conducting wire (14) at a temperature to provide selective thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: December 1, 2009
    Assignee: Rolls-Royce plc
    Inventors: Gerard D Agnew, Robert H Cunningham, Gary J Saunders
  • Patent number: 7556781
    Abstract: A pre-reformer (10) comprises a non-electrically conducting gas tight duct (12) and an electrically conducting wire (14) arranged in the duct (12). The electrically conducting wire (14) is electrically isolated from the duct (12). The duct (12) has an inlet (16) for receiving a hydrocarbon fuel at a first end (18) and an outlet (20) for supplying a pre-reformed hydrocarbon fuel at a second end (22). At least the inner surface (24) of the duct (12) is chemically inert with respect to the hydrocarbon fuel. An electrical power supply (26) is electrically connected to the electrically conducting wire (14) and a control means (28) controls the supply of electrical current through the electrically conducting wire (14) to maintain the electrically conducting wire (14) at a temperature to provide selective thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
    Type: Grant
    Filed: July 6, 2004
    Date of Patent: July 7, 2009
    Assignee: Rolls-Royce, PLLC
    Inventors: Gerard D Agnew, Robert H Cunningham, Gary J Saunders
  • Patent number: 7516609
    Abstract: Carbon dioxide recirculating apparatus (20, 120) is disclosed for use in an arrangement having combination means (115) and a path for the flow of a gas through the combustion means (115). The apparatus (20, 120) comprises extraction means (221) for extracting carbon dioxide from a first region of the path downstream of the combustion means (115). It further includes condensing means (26, 30) for condensing the extracted carbon dioxide, and feed means (36, 136) for feeding the condensed carbon dioxide to a second region of the path upstream of the combustion means.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: April 14, 2009
    Assignee: Rolls-Royce plc
    Inventor: Gerard D Agnew
  • Publication number: 20090068538
    Abstract: A fuel cell stack (10) comprises a plurality of modules (12) and each module (12) comprises an elongate hollow member (14). Each module (12) has at least one passage (31) extending longitudinally through the hollow member (14) for the flow of a reactant. Each hollow member (14) has a first flat surface (16) and a second flat surface (18) arranged parallel to the first flat surface (16). At least one of the modules (12) includes a plurality of fuel cells (20). The fuel cells (20) are arranged on at least one of the first and second flat surfaces (16,18) of the at least one module (12). A first end (30) and a first side (32) of each module (12) has a first integral feature (34) to provide a spacer and a connection with an adjacent module (12) and a second end (38) and a second side (40) of each module (12) has a second integral feature (42) to provide a spacer and a connection with another adjacent module (12).
    Type: Application
    Filed: November 10, 2008
    Publication date: March 12, 2009
    Inventors: Gary Wright, Nigel T. Hart, Gerard D. Agnew, Christopher Burrows
  • Publication number: 20090061264
    Abstract: Carbon dioxide recirculating apparatus (20, 120) is disclosed for use in an arrangement having combination means (115) and a path for the flow of a gas through the combustion means (115). The apparatus (20, 120) comprises extraction means (221) for extracting carbon dioxide from a first region of the path downstream of the combustion means (115). It further includes condensing means (26, 30) for condensing the extracted carbon dioxide, and feed means (36, 136) for feeding the condensed carbon dioxide to a second region of the path upstream of the combustion means.
    Type: Application
    Filed: October 28, 2008
    Publication date: March 5, 2009
    Inventor: Gerard D. Agnew
  • Publication number: 20090042082
    Abstract: A fuel cell arrangement comprises at least one fuel cell module, each fuel cell module comprises a plurality of fuel cells. Each fuel cell module is hollow and defines a chamber. Each fuel cell module is arranged within an inner vessel and the inner vessel is arranged within an outer pressure vessel. Means to supply oxidant is arranged to supply oxidant to the space within the inner vessel so as to supply oxidant to the cathode electrodes. Means to supply fuel is arranged to supply fuel to the chamber in each fuel cell module so to supply fuel to the anode electrodes. The outer pressure vessel is protected from the high temperature environment of the fuel cells by the inner vessel. The outer pressure vessel forms the main pressure containment of the arrangement and operates at a lower temperature and operates with a greater safety margin than a single pressure vessel arrangement.
    Type: Application
    Filed: March 13, 2006
    Publication date: February 12, 2009
    Applicant: ROLLS-ROYCE PLC
    Inventors: James M. Townsend, Michele Bozzolo, Gerard D. Agnew
  • Patent number: 7473482
    Abstract: A solid oxide fuel cell module (30) comprises a plurality of fuel cells (36). Each fuel cell (36) comprises a first electrode (40), an electrolyte (42) and a second electrode (44). A plurality of interconnectors (38) are arranged to electrically connect the fuel cells (36) in electrical series. Each interconnector (38) electrically connects a first electrode (40) of one fuel cell (36) to a second electrode (44) of an adjacent fuel cell (36). The first electrode (40) comprises a first layer (40A) on the electrolyte (42 to optimize the electrochemical activity at the electrolyte (42) and a second layer (40B) on the first layer (40A) to provide electronic conduction perpendicular to the layers (40, 42, 44) of the fuel cell (36). The second layer (40B) is arranged such that electronic conduction perpendicular to the layers (40, 42, 44)) of the fuel cell (36) is different at different positions in the second layer (40B).
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: January 6, 2009
    Assignee: Rolls-Royce plc
    Inventors: Nigel T. Hart, Nieves Lapena-Rey, Gary J. Wright, Gerard D. Agnew
  • Publication number: 20080314741
    Abstract: An electrolysis apparatus comprises an electrolysis cell to electrolyze a first fluid to generate a product fluid. The electrolysis apparatus also comprises a fuel cell to electrolyze an electrolytic fluid and to heat a second fluid. The electrolysis apparatus also includes a fluid transfer arrangement to transfer the heated second fluid from the fuel cell to the electrolysis cell to provide heat to drive the electrolysis of the first fluid in the electrolysis cell.
    Type: Application
    Filed: May 28, 2008
    Publication date: December 25, 2008
    Inventors: Cristiano Balestrino, Gerard D. Agnew, Michele Bozzolo
  • Patent number: 7465512
    Abstract: A fuel cell stack comprises a plurality of modules and each module comprises an elongate hollow member and one passage extending through the hollow member for the flow of a reactant. Each hollow member has a first flat surface and a second flat surface. At least one of the modules includes a plurality of fuel cells arranged on at least one of the first and second flat surfaces. Each module has a first and second integral feature to provide a spacer and a connection with its adjacent modules. The first integral feature comprises a third flat surface and the second integral feature comprises a fourth flat surface. The third flat surface is arranged at an intersecting angle to the first flat surface and the fourth flat surface is arranged at an intersecting angle to the second flat surface.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: December 16, 2008
    Assignee: Rolls-Royce plc
    Inventors: Gary Wright, Nigel T Hart, Gerard D Agnew, Christopher Burrows
  • Publication number: 20080289955
    Abstract: Solid oxide stacks used as fuel cells generate electricity from hydrogen or other sources. By an electrolysis process such standard fuel cells can be operated in order to create hydrogen or other electro chemical by-products. Unfortunately stacks generally operate at relatively high temperatures which will be difficult to sustain purely on economic grounds. In such circumstances less efficient operation can be achieved at lower temperatures where the air-specific resistance is higher by balancing with the electrical power input in order to cause the disassociation required. In such circumstances by provision of an incident heat source, whether that be through a heat exchanger heating the compressed air flow, or recycling of a proportion of exhaust from the stack, or combustion of a product from stack disassociation the result will be a sustaining electrolysis operation reducing the amount of expensive electrical supply required to achieve dissociation.
    Type: Application
    Filed: April 22, 2008
    Publication date: November 27, 2008
    Inventors: Cristiano Balestrino, Gerard D. Agnew, Michele Bozzolo
  • Publication number: 20080292925
    Abstract: A pre-reformer (10) comprises a non-electrically conducting gas tight duct (12) and an electrically conducting wire (14) arranged in the duct (12). The electrically conducting wire (14) is electrically isolated from the duct (12). The duct (12) has an inlet (16) for receiving a hydrocarbon fuel at a first end (18) and an outlet (20) for supplying a pre-reformed hydrocarbon fuel at a second end (22). At least the inner surface (24) of the duct (12) is chemically inert with respect to the hydrocarbon fuel. An electrical power supply (26) is electrically connected to the electrically conducting wire (14) and a control means (28) controls the supply of electrical current through the electrically conducting wire (14) to maintain the electrically conducting wire (14) at a temperature to provide selective thermal decomposition of higher hydrocarbons in the hydrocarbon fuel. The performer reduces coking in associated fuel cells and other parts of a fuel cell system.
    Type: Application
    Filed: August 5, 2008
    Publication date: November 27, 2008
    Inventors: Gerard D. Agnew, Robert H. Cunningham, Gary J. Saunders
  • Patent number: 7422820
    Abstract: A solid oxide fuel cell stack (10) comprises a plurality of modules (12). Each module (12) comprises an elongate hollow member (14). Each hollow member (14) has at least one passage (32) extending longitudinally through the hollow member (14) for the flow of reactant. Each hollow member (14) has two parallel flat surfaces (16,18). At least one of the modules (12A, 12B, 12C) includes a plurality of solid oxide fuel cells (20). The solid oxide fuel cells (20) are arranged on the flat surfaces (16,18) of the modules (12A, 12B, 12C). At least one end (34) of each module (12) is connected to an end (36) of an adjacent module (12) to allow reactant to flow sequentially through the modules (12). The arrangement of the modules (12) provides compliance in the solid oxide fuel cell stack (10) and thermal and mechanical stresses in the solid oxide fuel cell stack (10) are reduced.
    Type: Grant
    Filed: January 21, 2004
    Date of Patent: September 9, 2008
    Assignee: Rolls-Royce plc
    Inventors: Gerard D Agnew, Nigel T Hart, Michael J Oakely, Mark N Pashley, Eric W Dean
  • Patent number: 7399546
    Abstract: A solid oxide fuel cell (10) comprises an anode electrode (12), a cathode electrode (14) and an electrolyte (16) between the anode electrode (12) and the cathode electrode (14). A gaseous fuel is supplied to an anode chamber (18) partially defined by the anode electrode (12) and a gaseous oxidant is supplied to a cathode chamber (20) partially defined by the cathode electrode (14). The electrolyte (16) comprises a first dense non-porous layer (22), a second porous layer (24) on the first dense non-porous layer (22) and a third dense non-porous layer (26) on the second porous layer (24). The anode electrode (12) is arranged on the first dense non-porous layer (22) and the cathode electrode (14) is arranged on the third dense non-porous layer (26). The second porous layer (24) acts as a buffer between the first dense non-porous layer (22) and the third dense non-porous layer (26) to prevent defects propagating between the layers (22,26) and to prevent fuel and oxidant leaking through the electrolyte (16).
    Type: Grant
    Filed: December 21, 2005
    Date of Patent: July 15, 2008
    Assignee: Rolls-Royce plc
    Inventors: Nigel T Hart, Gary J Wright, Gerard D Agnew, Mark Cassidy