Patents by Inventor Gerard Michael Ludtka

Gerard Michael Ludtka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11951519
    Abstract: A system and method for an improved material flow through an extrusion machine by altering the material properties in a magnetic field are provided. The electromagnetic extrusion system includes a ram that is moved into a chamber containing an extrusion material to force the extrusion material out of an opening defined, at least in part, by a die to create an extrusion with a cross-sectional shape corresponding to the predetermined shape of the opening. An electromagnetic winding of electrically conductive material is embedded within a tool retainer block surrounding the container and is helically wound about the chamber and carries a DC electrical current to generate a magnetic field having a magnetic flux density of at least 2 Tesla within the extrusion material to dissipate dislocation defect structures in the extrusion material being extruded via the magnetoplasticity effect. The magnetic field therefore provides for reduced flow stress on the tooling.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: April 9, 2024
    Assignee: MAGNA INTERNATIONAL INC.
    Inventors: Jeremiah John Brady, Edward Karl Steinebach, Gerard Michael Ludtka
  • Publication number: 20200391265
    Abstract: A system and method for an improved material flow through an extrusion machine by altering the material properties in a magnetic field are provided. The electromagnetic extrusion system includes a ram that is moved into a chamber containing an extrusion material to force the extrusion material out of an opening defined, at least in part, by a die to create an extrusion with a cross-sectional shape corresponding to the predetermined shape of the opening. An electromagnetic winding of electrically conductive material is embedded within a tool retainer block surrounding the container and is helically wound about the chamber and carries a DC electrical current to generate a magnetic field having a magnetic flux density of at least 2 Tesla within the extrusion material to dissipate dislocation defect structures in the extrusion material being extruded via the magnetoplasticity effect. The magnetic field therefore provides for reduced flow stress on the tooling.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 17, 2020
    Inventors: Jeremiah John BRADY, Edward Karl STEINEBACH, Gerard Michael LUDTKA
  • Patent number: 9725829
    Abstract: Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400° C. and less than 2200° C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400° C. or 500° C. and less than or up to 1000° C., 1100° C., or 1200° C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200° C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: August 8, 2017
    Assignee: UT-BATTELLE, LLC
    Inventors: Amit K. Naskar, Soydan Ozcan, Claude C. Eberle, Mohamed Gabr Abdallah, Gail Mackiewicz Ludtka, Gerard Michael Ludtka, Felix Leonard Paulauskas, John Daniel Kennedy Rivard
  • Patent number: 9504973
    Abstract: Particulate matter is dispersed in a fluid material. A sample including a first material in a fluid state and second material comprising particulate matter are placed into a chamber. The second material is spatially dispersed in the first material utilizing EMAT force. The dispersion process continues until spatial distribution of the second material enables the sample to meet a specified criterion. The chamber and/or the sample is electrically conductive. The EMAT force is generated by placing the chamber coaxially within an induction coil driven by an applied alternating current and placing the chamber and induction coil coaxially within a high field magnetic. The EMAT force is coupled to the sample without physical contact to the sample or to the chamber, by another physical object. Batch and continuous processing are utilized. The chamber may be folded within the bore of the magnet. Acoustic force frequency and/or temperature may be controlled.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 29, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: Roger A. Kisner, Orlando Rios, Alexander M. Melin, Gerard Michael Ludtka, Gail Mackiewicz Ludtka, John B. Wilgen
  • Patent number: 9387486
    Abstract: A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanent magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.
    Type: Grant
    Filed: September 28, 2015
    Date of Patent: July 12, 2016
    Assignee: UT-BATTELLE, LLC
    Inventors: Mengdawn Cheng, Gerard Michael Ludtka, Larry R. Avens
  • Publication number: 20160089677
    Abstract: A high-gradient permanent magnet apparatus for capturing paramagnetic particles, the apparatus comprising: (i) at least two permanent magnets positioned with like poles facing each other; (ii) a ferromagnetic spacer separating the like poles; and (iii) a magnetizable porous filling material in close proximity to the at least two permanent magnets. Also described is a method for capturing paramagnetic particles in which a gas or liquid sample containing the paramagnetic particles is contacted with the high-gradient permanent magnet apparatus described above; wherein, during the contacting step, the gas or liquid sample contacts the magnetizable porous filling material of the high-gradient permanent magnet apparatus, and at least a portion of the paramagnetic particles in the gas or liquid sample is captured on the magnetizable porous filling material.
    Type: Application
    Filed: September 28, 2015
    Publication date: March 31, 2016
    Inventors: Mengdawn CHENG, Gerard Michael LUDTKA, Larry R. Avens
  • Patent number: 9255343
    Abstract: A method of making a single crystal comprises heating a material comprising magnetic anisotropy to a temperature T sufficient to form a melt of the material. A magnetic field of at least about 1 Tesla is applied to the melt at the temperature T, where a magnetic free energy difference ?Gm between different crystallographic axes is greater than a thermal energy kT. While applying the magnetic field, the melt is cooled at a rate of about 30° C./min or higher, and the melt solidifies to form a single crystal of the material.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: February 9, 2016
    Assignee: UT-Battelle, LLC
    Inventors: Boyd Mccutchen Evans, III, Roger A. Kisner, Gail Mackiewicz Ludtka, Gerard Michael Ludtka, Alexander M. Melin, Donald M. Nicholson, Chad M. Parish, Orlando Rios, Athena S. Sefat, David L. West, John B. Wilgen
  • Publication number: 20140265038
    Abstract: Method for the preparation of carbon fiber from fiber precursor, wherein the fiber precursor is subjected to a magnetic field of at least 3 Tesla during a carbonization process. The carbonization process is generally conducted at a temperature of at least 400° C. and less than 2200° C., wherein, in particular embodiments, the carbonization process includes a low temperature carbonization step conducted at a temperature of at least or above 400° C. or 500° C. and less than or up to 1000° C., 1100° C., or 1200° C., followed by a high temperature carbonization step conducted at a temperature of at least or above 1200° C. In particular embodiments, particularly in the case of a polyacrylonitrile (PAN) fiber precursor, the resulting carbon fiber may possess a minimum tensile strength of at least 600 ksi, a tensile modulus of at least 30 Msi, and an ultimate elongation of at least 1.5%.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: UT-BATTELLE, LLC
    Inventors: Amit K. Naskar, Soydan Ozcan, Claude C. Eberle, Mohamed Gabr Abdallah, Gail Mackiewicz Ludtka, Gerard Michael Ludtka, Felix Leonard Paulauskas, John Daniel Kennedy Rivard
  • Publication number: 20140269151
    Abstract: Particulate matter is dispersed in a fluid material. A sample including a first material in a fluid state and second material comprising particulate matter are placed into a chamber. The second material is spatially dispersed in the first material utilizing EMAT force. The dispersion process continues until spatial distribution of the second material enables the sample to meet a specified criterion. The chamber and/or the sample is electrically conductive. The EMAT force is generated by placing the chamber coaxially within an induction coil driven by an applied alternating current and placing the chamber and induction coil coaxially within a high field magnetic. The EMAT force is coupled to the sample without physical contact to the sample or to the chamber, by another physical object. Batch and continuous processing are utilized. The chamber may be folded within the bore of the magnet. Acoustic force frequency and/or temperature may be controlled.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: UT-Battelle, LLC
    Inventors: Roger A. Kisner, Orlando Rios, Alexander M. Melin, Gerard Michael Ludtka, Gail Mackiewicz Ludtka, John B. Wilgen