Patents by Inventor Gerard V. Kopcsay

Gerard V. Kopcsay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090259713
    Abstract: A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System-On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node may be used individually or simultaneously to work on any combination of computation or communication as required by the particular algorithm being solved or executed at any point in time. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency.
    Type: Application
    Filed: June 26, 2009
    Publication date: October 15, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthias A. Blumrich, Dong Chen, George L. Chiu, Thomas M. Cipolla, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Gerard V. Kopcsay, Lawrence S. Mok, Todd E. Takken
  • Patent number: 7555566
    Abstract: A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System-On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node may be used individually or simultaneously to work on any combination of computation or communication as required by the particular algorithm being solved or executed at any point in time. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: June 30, 2009
    Assignee: International Business Machines Corporation
    Inventors: Matthias A. Blumrich, Dong Chen, George L. Chiu, Thomas M. Cipolla, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Gerard V. Kopcsay, Lawrence S. Mok, Todd E. Takken
  • Publication number: 20090006808
    Abstract: A novel massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. Novel use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.
    Type: Application
    Filed: June 26, 2007
    Publication date: January 1, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthias A. Blumrich, Dong Chen, George Chiu, Thomas M. Cipolla, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Shawn Hall, Rudolf A. Haring, Philip Heidelberger, Gerard V. Kopcsay, Martin Ohmacht, Valentina Salapura, Krishnan Sugavanam, Todd Takken
  • Patent number: 7444385
    Abstract: A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: October 28, 2008
    Assignee: International Business Machines Corporation
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E Giampapa, Philip Heidelberger, Gerard V. Kopcsay, Burkhard D. Steinmacher-Burow, Todd E. Takken
  • Patent number: 7319946
    Abstract: New Frequency dependent RLC extraction and modeling for on chip integrity and noise verification employs: A) 2D scan line algorithm for the collection of adjacent signal and power conductor coordinates; B) In core pair-wise frequency Dependent RL extraction; C) In core equivalent circuit synthesis; D) caching and partitioning RL extraction techniques for run time efficiency; and E) Techniques for synthesizing stable circuits to represent frequency dependent RL circuits for non-mono tonic R12.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: January 15, 2008
    Assignee: International Business Machines Corporation
    Inventors: Michael A. Bowen, Alina Deutsch, Gerard V. Kopcsay, Byron L. Krauter, Barry J. Rubin, Howard H. Smith, David J. Widiger
  • Patent number: 7093206
    Abstract: A computer aided design (CAD) system. A template generation engine generates templates from interconnect configuration files. A field solver generates high frequency passive element relationships from the templates. A circuit builder generates circuit description files from device technology models and from high frequency passive element relationships. Parameterized circuit description models may be generated for large range of sensitivity analyses. A simulator simulates circuit responses for transmission line models from the circuit description files. Interconnect configuration files may be generated by a geometry and material definition module that receives process description data from a designer.
    Type: Grant
    Filed: October 21, 2003
    Date of Patent: August 15, 2006
    Assignee: International Business Machines Corp.
    Inventors: Minakshisundaran B. Anand, Matthew S. Angyal, Alina Deutsch, Ibrahim M. Elfadel, Gerard V. Kopcsay, Barry J. Rubin, Howard H. Smith
  • Patent number: 6963204
    Abstract: The present invention relates to a method for analyzing the noise prediction within one or more electrical circuits, wherein the electrical circuits have a power mesh grid distribution system that feeds power levels to the electrical circuits that are connected by signal wires. After identifying a driver and receiver electrical circuit to be analyzed, a power block is generated that is associated with the driver and receiver electrical circuit by partitioning an area of a power mesh grid distribution system into a power block that can be modeled with lossy transmission line techniques. Next, signal wires situated between the driver and receiver electrical circuits are partitioned into signal blocks that can be modeled with lossy transmission line techniques. Lastly, the power blocks and signal blocks associated with the electrical circuits are analyzed in order to predict the noise performance within the electrical circuits.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: November 8, 2005
    Assignee: International Business Machines Corporation
    Inventors: Alina Deutsch, Gerard V. Kopcsay, Byron L. Krauter, Barry J. Rubin, Howard H. Smith
  • Publication number: 20040103218
    Abstract: A novel massively parallel supercomputer of hundreds of teraOPS-scale includes node architectures based upon System-On-a-Chip technology, i.e., each processing node comprises a single Application Specific Integrated Circuit (ASIC). Within each ASIC node is a plurality of processing elements each of which consists of a central processing unit (CPU) and plurality of floating point processors to enable optimal balance of computational performance, packaging density, low cost, and power and cooling requirements. The plurality of processors within a single node may be used individually or simultaneously to work on any combination of computation or communication as required by the particular algorithm being solved or executed at any point in time. The system-on-a-chip ASIC nodes are interconnected by multiple independent networks that optimally maximizes packet communications throughput and minimizes latency.
    Type: Application
    Filed: August 22, 2003
    Publication date: May 27, 2004
    Inventors: Matthias A Blumrich, Dong Chen, George L Chiu, Thomas M Cipolla, Paul W Coteus, Alan G Gara, Mark E Giampapa, Philip Heidelberg, Gerard V Kopcsay, Lawrence S Mok, Todd E Takken
  • Publication number: 20040078176
    Abstract: New Frequency dependent RLC extraction and modeling for on chip integrity and noise verification employs:
    Type: Application
    Filed: October 21, 2002
    Publication date: April 22, 2004
    Applicant: International Business Machines Corporation
    Inventors: Michael A. Bowen, Alina Deutsch, Gerard V. Kopcsay, Byron L. Krauter, Barry J. Rubin, Howard H. Smith, David J. Widiger
  • Publication number: 20040068599
    Abstract: A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms.
    Type: Application
    Filed: August 22, 2003
    Publication date: April 8, 2004
    Inventors: Matthias A. Blumrich, Dong Chen, Paul W. Coteus, Alan G. Gara, Mark E. Giampapa, Philip Heidelberger, Gerard V. Kopcsay, Burkhard D. Steinmacher-Burow, Todd E. Takken
  • Patent number: 6418401
    Abstract: A method for reducing the computation time and improving the productivity in designing high-performance microprocessor chips that have no failures—due to crosstalk noise. The technique allows a very fast calculation of tables of frequency-dependent circuit parameters needed for accurate crosstalk prediction on lossy on-chip interconnections. These tables of parameters are the basis for CAD tools that perform crosstalk checking on >10K critical nets on typical microprocessor chips. A fast table generation allows for rapid incorporation of design or processing changes and transition to more advanced technologies.
    Type: Grant
    Filed: February 11, 1999
    Date of Patent: July 9, 2002
    Assignee: International Business Machines Corporation
    Inventors: Allan H. Dansky, Alina Deutsch, Gerard V. Kopcsay, Phillip J. Restle, Howard H. Smith
  • Patent number: 5502392
    Abstract: A method for completely characterizing coupled transmission lines by short-pulse propagation is described. The complex frequency-dependent propagation matrix, impedance matrix and admittance matrix for a set of n parallel transmission lines can be determined by comparing the properties of two sets of coupled transmission lines of different length. Each transmission line set has two conductors of unequal length and ground conductors to form a coupled transmission line system. Each transmission line set can have uncoupled ends. An input pulse is provided at at least one node of each transmission line set. The complex frequency dependent propagation matrix of each transmission line set is determined by a comparison of the output pulses at the remaining nodes of each transmission line set which involves ratioing to cancel out the effect of the pad-to-probe discontinuity and the uncoupled ends which make it unnecessary to do any embedding.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: March 26, 1996
    Assignee: International Business Machines Corporation
    Inventors: Gnanalingam Arjavalingam, Alina Deutsch, Gerard V. Kopcsay, James K. Tam
  • Patent number: 4453176
    Abstract: A carrier for LSI chips includes a built-in capacitor structure in the carrier. The capacitor is located beneath the chip with the plates of the capacitor parallel to the chip mounting surface or at right angles to the chip mounting surface. The capacitor is formed by assembling an array of capacitive segments together to form the first one of the plates of a capacitor with the other plate spanning a plurality of the segments of the first plate. Each of the segments of the first plate includes a set of conductive via lines which extend up to a severable link on the chip mounting surface. The severable via is cut by means of a laser beam or the like when the capacitor must be repaired by deleting a defective segment of the capacitor.
    Type: Grant
    Filed: December 31, 1981
    Date of Patent: June 5, 1984
    Assignee: International Business Machines Corporation
    Inventors: Dudley A. Chance, Gerard V. Kopcsay