Patents by Inventor Gerardo J. Majano

Gerardo J. Majano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11891407
    Abstract: Provided herein are methods of novel methods of synthesizing a metal-organic framework system by vapor-phase appending of a plurality of ligands appended to a metal-organic framework. Also, provided are methods of recycling metal-organic framework systems by detaching the ligand and re-appending the same ligand or appending a different ligand to the metal-organic framework to provide a recycled or repurposed metal-organic framework system.
    Type: Grant
    Filed: August 12, 2021
    Date of Patent: February 6, 2024
    Assignee: EXXONMOBIL TECHNOLOGY AND ENGINEERING COMPANY
    Inventors: Carter W. Abney, Joseph M. Falkowski, Mary S. Abdulkarim, Anna C. Ivashko, Julie J. Seo, Aaron W. Peters, Matthew T. Kapelewski, Gerardo J. Majano Sanchez, Wesley Sattler, Simon C. Weston
  • Publication number: 20230151028
    Abstract: Metal-organic frameworks are synthesized from either a high concentration synthesis where reaction solutions comprising increased reagent concentrations, or suspensions of reagents which exceed their solubility limit in the reaction solution in a high solids synthesis. In both approaches, the solubility of reagent is maximized by inclusion of a buffer, fixing a nominal pH of the reaction solution to allow metal-organic framework formation. These methods improve yields and scale up of metal-organic frameworks.
    Type: Application
    Filed: February 16, 2021
    Publication date: May 18, 2023
    Inventors: Carter W. Abney, Anna C. Ivashko, Gerardo J. Majano
  • Publication number: 20230001617
    Abstract: Methods making a metal-organic framework extrudate in an extruder comprising the steps of: (a) mixing a metal-organic framework material with an extrusion aid to form a metal-organic framework extrudate mixture; and (b) extruding the metal-organic framework mixture in the extruder to produce the metal-organic framework extrudate where the pressure within the extruder is reduced between about 10% to about 55% when compared to pressure within the extruder when extruding the metal-organic framework material without the extrusion aid. The extrusion aid can be a liquid extrusion aid, a solid extrusion aid and/or a polymeric extrusion aid.
    Type: Application
    Filed: July 27, 2020
    Publication date: January 5, 2023
    Inventors: Matthew T. Kapelewski, Jean W. Beeckman, Gerardo J. Majano
  • Patent number: 11396450
    Abstract: Sulfur-tolerant reforming catalysts that include bulk alumina in the catalyst support are provided. The sulfur-tolerant reforming catalysts can include a sulfur-tolerant catalytic metal to facilitate reforming. The catalyst can further include a support material that includes at least some alumina as bulk alumina and/or octahedrally coordinated alumina. The sulfur-tolerant reforming catalysts can be regenerated, such as periodically regenerated, under relatively mild conditions that allow the catalysts to maintain reforming activity in the presence of 1 vppm to 1000 vppm of sulfur in the feed for reforming.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: July 26, 2022
    Assignee: ExxonMobil Technology and Engineering Company
    Inventors: Brian M. Weiss, Tilman W. Beutel, Herbert W. Barry, Gerardo J. Majano Sanchez, John F. Brody, Walter Weissman, Kanmi Mao
  • Publication number: 20220213125
    Abstract: Metal-organic frameworks (MOFs) are highly porous entities comprising a multidentate ligand coordinated to multiple metal atoms, typically as a coordination polymer. MOFs are usually produced in powder form. Extrusion of powder-form MOFs to produce shaped bodies has heretofore proven difficult due to loss of surface area and poor crush strength of MOF extrudates, in addition to phase transformations occurring during extrusion. The choice of mixing conditions and the mixing solvent when forming MOF extrudates can impact these factors. Extrudates comprising a MOF consolidated material may feature the MOF consolidated material having a BET surface area of about 50% or greater relative to that of a pre-crystallized MOF powder material used to form the extrudate. X-ray powder diffraction of the extrudate shows about 20% or less conversion of the MOF consolidated material into a phase differing from that of the pre-crystallized MOF powder material.
    Type: Application
    Filed: December 13, 2019
    Publication date: July 7, 2022
    Inventors: Gerardo J. Majano, Joseph M. Falkowski, Scott J. Weigel, Matthew T. Kapelewski, Pavel Kortunov
  • Publication number: 20220162247
    Abstract: A process for producing a bimetallic, terephthalate metal organic framework (MOF) having a flexible structure and comprising aluminum and iron cations, comprises contacting a water-soluble aluminum salt, a chelated iron compound and 1,4-benzenedicarboxylic acid or a salt thereof with a fluoride-free mixture of water and a polar organic solvent at a reaction temperature of less than 200° C. to produce a solid reaction product comprising the MOF.
    Type: Application
    Filed: April 1, 2020
    Publication date: May 26, 2022
    Inventors: Joseph M. Falkowski, Pavel Kortunov, Yogesh V. Joshi, Gerardo J. Majano
  • Publication number: 20220143586
    Abstract: The present disclosure provides mesoporous catalyst compounds and compositions having one or more group 13 atoms. The present disclosure further relates to processes for converting hydrocarbon feedstocks to small olefins. In one aspect, a catalyst compound includes a zeolite having a structural type selected from MFI, MSE, MTW, Theta-One (TON), Ferrierite (FER), AFI, AFS, ATO, BEA, BEC, BOG, BPH, CAN, CON, EMT, EON, EZT, FAU, GME, GON, IFR, ISV, ITN, IWR, IWW, LTL, MAZ, MEI, MOR, MOZ, OFF, OKO, OSI, SAF, SAO, SEW, SFE, SFO, SSF, SSY, and USI, or a combination thereof, the zeolite having a silicon to aluminum molar ratio (Si/Al ratio) of from about 5 to about 40. In one aspect, a catalyst composition includes the catalyst compound and one or more group 13 metal.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 12, 2022
    Inventors: Tilman W. Beutel, Gerardo J. Majano Sanchez, Walter Weissman, Brian M. Weiss, Himanshu Gupta, John F. Brody, Scott J. Weigel
  • Publication number: 20220089618
    Abstract: Metal-organic frameworks (MOFs) are highly porous entities comprising a multidentate ligand coordinated to multiple metal atoms, typically as a coordination polymer. MOFs are usually produced from a solvent in powder form under hydrothermal or solvothermal synthesis conditions. Alternately, powder-form precursors of MOFs may be formed by milling or mulling a substantially solid mixture of a metal salt and a multidentate organic ligand, optionally in the presence of a small amount of a solvent. The powder-form precursors may then undergo heating, typically in the absence of applied shear, to produce the corresponding MOF. Mulling may be differentiated from milling at least in that mulling applies to the substantially solid mixture at a non-constant pressure and milling applies a constant pressure while forming the powder-form precursor. In some cases, mulling may promote more effective formation of the powder-form precursor compared to milling.
    Type: Application
    Filed: December 13, 2019
    Publication date: March 24, 2022
    Inventors: Gerardo J. Majano, Joseph M. Falkowski
  • Publication number: 20220048929
    Abstract: Provided herein are methods of novel methods of synthesizing a metal-organic framework system by vapor-phase appending of a plurality of ligands appended to a metal-organic framework. Also, provided are methods of recycling metal-organic framework systems by detaching the ligand and re-appending the same ligand or appending a different ligand to the metal-organic framework to provide a recycled or repurposed metal-organic framework system.
    Type: Application
    Filed: August 12, 2021
    Publication date: February 17, 2022
    Inventors: Carter W. Abney, Joseph M. Falkowski, Mary S. Abdulkarim, Anna C. Ivashko, Julie J. Seo, Aaron W. Peters, Matthew T. Kapelewski, Gerardo J. Majano Sanchez, Wesley Sattler, Simon C. Weston
  • Patent number: 10717069
    Abstract: Zn-promoted and/or Ga-promoted cracking catalysts, such as cracking catalysts comprising an MSE framework zeolite or an MFI framework zeolite can provide unexpectedly superior conversion of branched paraffins when used as part of a catalyst during reforming of a hydrocarbon fuel stream. The conversion and reforming of the hydrocarbon fuel stream can occur, for example, in an internal combustion engine. The conversion and reforming can allow for formation of higher octane compounds from the branched paraffins.
    Type: Grant
    Filed: December 5, 2017
    Date of Patent: July 21, 2020
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Brian M. Weiss, Gerardo J. Majano, Tilman W. Beutel, Karl G. Strohmaier, John F. Brody, Samia Ilias, Scott J. Weigel, Shamel Merchant, Eugine Choi, Robert J. Colby, Walter Weissman
  • Patent number: 10647798
    Abstract: Disclosed herein are spray-dried catalyst compositions including one or more olefin polymerization catalysts and at least one support of an organosilica material, optionally, with at least one activator. The spray-dried catalyst compositions may be used in polymerization processes for the production of polyolefin polymers.
    Type: Grant
    Filed: November 9, 2017
    Date of Patent: May 12, 2020
    Assignee: ExxonMobil Chemical Patents, Inc.
    Inventors: Matthew W. Holtcamp, Quanchang Li, David C. Calabro, Gerardo J. Majano Sanchez, Machteld M. Mertens, Charles J. Harlan
  • Publication number: 20190300364
    Abstract: Sulfur-tolerant reforming catalysts that include bulk alumina in the catalyst support are provided. The sulfur-tolerant reforming catalysts can include a sulfur-tolerant catalytic metal to facilitate reforming. The catalyst can further include a support material that includes at least some alumina as bulk alumina and/or octahedrally coordinated alumina. The sulfur-tolerant reforming catalysts can be regenerated, such as periodically regenerated, under relatively mild conditions that allow the catalysts to maintain reforming activity in the presence of 1 vppm to 1000 vppm of sulfur in the feed for reforming.
    Type: Application
    Filed: March 7, 2019
    Publication date: October 3, 2019
    Inventors: Brian M. WEISS, Tilman W. BEUTEL, Herbert W. BARRY, Gerardo J. MAJANO SANCHEZ, John F. BRODY, Walter WEISSMAN, Kanmi MAO
  • Publication number: 20180179310
    Abstract: Disclosed herein are spray-dried catalyst compositions including one or more olefin polymerization catalysts and at least one support of an organosilica material, optionally, with at least one activator. The spray-dried catalyst compositions may be used in polymerization processes for the production of polyolefin polymers.
    Type: Application
    Filed: November 9, 2017
    Publication date: June 28, 2018
    Inventors: Matthew W. Holtcamp, Quanchang Li, David C. Calabro, Gerardo J. Majano Sanchez, Machteld M. Mertens, Charles J. Harlan
  • Publication number: 20180169623
    Abstract: Zn-promoted and/or Ga-promoted cracking catalysts, such as cracking catalysts comprising an MSE framework zeolite or an MFI framework zeolite can provide unexpectedly superior conversion of branched paraffins when used as part of a catalyst during reforming of a hydrocarbon fuel stream. The conversion and reforming of the hydrocarbon fuel stream can occur, for example, in an internal combustion engine. The conversion and reforming can allow for formation of higher octane compounds from the branched paraffins.
    Type: Application
    Filed: December 5, 2017
    Publication date: June 21, 2018
    Inventors: Brian M. Weiss, Gerardo J. Majano, Tilman W. Beutel, Karl G. Strohmaier, John F. Brody, Samia Ilias, Scott J. Weigel, Shamel Merchant, Eugine Choi, Robert J. Colby, Walter Weissman
  • Patent number: 9994658
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a bisphenolate compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 12, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Matthew W. Holtcamp, Xuan Ye, Gregory S. Day, David A. Cano, Machteld M. W. Mertens, Gerardo J. Majano Sanchez, Rohan A. Hule
  • Patent number: 9994657
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a bisphenolate compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: June 12, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Crisita Carmen H. Atienza, Matthew W. Holtcamp, Xuan Ye, Gregory S. Day, David A. Cano, Michelle E. Titone, Machteld M. W. Mertens, Gerardo J. Majano Sanchez
  • Patent number: 9982067
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a pyridyldiamido compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: May 29, 2018
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Matthew W. Holtcamp, John R. Hagadorn, Gregory S. Day, Machteld M. W. Mertens, Gerardo J. Majano Sanchez, Rohan A. Hule
  • Publication number: 20170096511
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a bisphenolate compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Application
    Filed: August 19, 2016
    Publication date: April 6, 2017
    Inventors: Crisita Carmen H. Atienza, Matthew W. Holtcamp, Xuan Ye, Gregory S. Day, David A. Cano, Machteld M. W. Mertens, Gerardo J. Majano Sanchez, Rohan A. Hule
  • Publication number: 20170096509
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a bisphenolate compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Application
    Filed: August 19, 2016
    Publication date: April 6, 2017
    Inventors: Crisita Carmen H. Atienza, Matthew W. Holtcamp, Xuan Ye, Gregory S. Day, David A. Cano, Michelle E. Titone, Machteld M. W. Mertens, Gerardo J. Majano Sanchez
  • Publication number: 20170088641
    Abstract: This invention relates to a process to polymerize olefins comprising: i) contacting one or more olefins with a catalyst system comprising: 1) a support comprising an organoaluminum treated layered silicate and an inorganic oxide; and 2) a pyridyldiamido compound; and ii) obtaining olefin polymer having high molecular weight and layered silicate dispersed therein. Preferably the support is in the form of spheroidal particles.
    Type: Application
    Filed: August 17, 2016
    Publication date: March 30, 2017
    Inventors: Matthew W. Holtcamp, John R. Hagadorn, Gregory S. Day, Machteld M. W. Mertens, Gerardo J. Majano Sanchez, Rohan A. Hule