Patents by Inventor Gerd Kaibel

Gerd Kaibel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9345988
    Abstract: Apparatus and processes for continuous distillative separation of a mixture comprising one or more alkanolamine(s) are described. The separation is performed in one or more dividing wall column(s) and the alkanolamine or the alkanolamines is/are withdrawn as a side draw stream or side draw streams (side fraction(s)).
    Type: Grant
    Filed: October 18, 2013
    Date of Patent: May 24, 2016
    Assignee: BASF SE
    Inventors: Willi Schmidt, Gerd Kaibel, Elke Geiβler, Wolfgang Reif, Manfred Julius, Frank-Friedrich Pape
  • Patent number: 8907119
    Abstract: In the acid-catalyzed esterification of mercaptoalkyl alcohols by means of carboxylic acids to form mercaptoalkly carboxylates, formation of undesirable, usually sparingly soluble by-products usually occurs. The process of the invention in the absence of acid catalysts avoids the formation of such by-products. Particularly when the esterification of the invention is carried out as reactive distillation using reactive column and residence vessel, good degrees of conversion can also be obtained without acid catalyst and at the same time the formation of the by-products can be largely avoided.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: December 9, 2014
    Assignee: BASF SE
    Inventors: Florian Garlichs, Jens Baldamus, Gerd Kaibel
  • Patent number: 8901350
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and a tertiary amine (I) in a molar ratio of from 0.5 to 5 is produced by combining tertiary amine (I) and a formic acid source, from 10 to 100% by weight of the secondary components present therein are separated off and formic acid is removed by distillation in a distillation apparatus at a bottom temperature of from 100 to 300° C. and a pressure of from 30 to 3000 hPa abs from the liquid stream obtained, the bottom discharge from the distillation apparatus being separated into two liquid phases and the upper liquid phase being recycled to the formic acid source and the lower liquid phase being recycled for separating off the secondary components and/or to the distillation apparatus.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: December 2, 2014
    Assignee: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Karin Pickenäcker, Stefan Rittinger, Thomas Schaub, Joaquim Henrique Teles, Rocco Paciello, Gerd Kaibel
  • Patent number: 8674140
    Abstract: Apparatus and processes for continuous distillative separation of a mixture comprising one or more alkanolamine(s), wherein the separation is performed in one or more dividing wall column(s) and the alkanolamine or the alkanolamines is/are withdrawn as a side draw stream or side draw streams (side fraction(s)).
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: March 18, 2014
    Assignee: BASF SE
    Inventors: Willi Schmidt, Gerd Kaibel, Elke Geiβbler, Wolfgang Reif, Manfred Julius, Frank-Friedrich Pape
  • Publication number: 20140061020
    Abstract: Apparatus and processes for continuous distillative separation of a mixture comprising one or more alkanolamine(s) are described. The separation is performed in one or more dividing wall column(s) and the alkanolamine or the alkanolamines is/are withdrawn as a side draw stream or side draw streams (side fraction(s)).
    Type: Application
    Filed: October 18, 2013
    Publication date: March 6, 2014
    Applicant: BASF SE
    Inventors: Willi Schmidt, Gerd Kaibel, Elke Geißler, Wolfgang Reif, Manfred Julius, Frank-Friedrich Pape
  • Patent number: 8557985
    Abstract: A process continuously hydrogenating unsaturated compounds, in which particles of a first hydrogenation catalyst are suspended in a liquid phase in which an unsaturated compound is dissolved, the liquid phase, in the presence of a hydrogenous gas at a first partial hydrogen pressure and at a first temperature, is conducted through a packed bubble column reactor in cocurrent counter to the direction of gravity, the effluent from the bubble column reactor is sent to a gas-liquid separation, the liquid phase is sent to a crossfiltration to obtain a retentate and a filtrate, the retentate is recycled into the bubble column reactor and the filtrate, in the presence of a hydrogenous gas at a second partial hydrogen pressure and at a second temperature, is passed over a bed of a second hydrogenation catalyst, the second partial hydrogen pressure is at least 10 bar higher than the first partial hydrogen pressure.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: October 15, 2013
    Assignee: BASF SE
    Inventors: Bram Willem Hoffer, Hartwig Voβ, Ekkehard Schwab, Udo Rheude, Gerd Kaibel, Mathias Haake, Jan Eberhardt, Michael Karcher
  • Publication number: 20130217912
    Abstract: In the acid-catalyzed esterification of mercaptoalkyl alcohols by means of carboxylic acids to form mercaptoalkly carboxylates, formation of undesirable, usually sparingly soluble by-products usually occurs. The process of the invention in the absence of acid catalysts avoids the formation of such by-products. Particularly when the esterification of the invention is carried out as reactive distillation using reactive column and residence vessel, good degrees of conversion can also be obtained without acid catalyst and at the same time the formation of the by-products can be largely avoided.
    Type: Application
    Filed: August 22, 2012
    Publication date: August 22, 2013
    Applicant: BASF SE
    Inventors: Florian Garlichs, Jens Baldamus, Gerd Kaibel
  • Patent number: 8461356
    Abstract: What is described is a process for obtaining maleic anhydride by distillation from a solution of maleic anhydride in a high-boiling absorbent which has been obtained by gas phase oxidation of a hydrocarbon and at least partial absorption of the oxidation products into the absorbent, by i) introducing the solution into the side of a feed column with a rectifying section disposed above the feed point and a stripping section disposed below the feed point, ii) providing an upper combining column which communicates with the upper end of the rectifying section and a lower combining column which communicates with the lower end of the stripping section, iii) providing a draw column which communicates with the upper combining column and the lower combining column, iv) drawing maleic anhydride off as a side draw from the draw column, and drawing off compounds having a lower boiling point than maleic anhydride at the top of the upper combining column and the high-boiling absorbent at the bottom of the lower combining c
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: June 11, 2013
    Assignee: BASF SE
    Inventors: Gunther Windecker, Gerd Kaibel, Michael Steiniger, Thilo Buntrock, Jens Weiguny, Dany Vanden Hautte, Thierry Lurquin
  • Publication number: 20120232267
    Abstract: A process continuously hydrogenating unsaturated compounds, in which particles of a first hydrogenation catalyst are suspended in a liquid phase in which an unsaturated compound is dissolved, the liquid phase, in the presence of a hydrogenous gas at a first partial hydrogen pressure and at a first temperature, is conducted through a packed bubble column reactor in cocurrent counter to the direction of gravity, the effluent from the bubble column reactor is sent to a gas-liquid separation, the liquid phase is sent to a crossfiltration to obtain a retentate and a filtrate, the retentate is recycled into the bubble column reactor and the filtrate, in the presence of a hydrogenous gas at a second partial hydrogen pressure and at a second temperature, is passed over a bed of a second hydrogenation catalyst, the second partial hydrogen pressure is at least 10 bar higher than the first partial hydrogen pressure.
    Type: Application
    Filed: March 19, 2012
    Publication date: September 13, 2012
    Applicant: BASF SE
    Inventors: Bram Willem Hoffer, Hartwig Voss, Ekkehard Schwab, Udo Rheude, Gerd Kaibel, Mathias Haake, Jan Eberhardt, Michael Karcher
  • Patent number: 8163963
    Abstract: A process is described for continuously hydrogenating unsaturated compounds, in which particles of a first hydrogenation catalyst are suspended in a liquid phase in which an unsaturated compound is dissolved, the liquid phase, in the presence of a hydrogenous gas at a first partial hydrogen pressure and at a first temperature, is conducted through a packed bubble column reactor in cocurrent counter to the direction of gravity, the effluent from the bubble column reactor is sent to a gas-liquid separation, the liquid phase is sent to a crossfiltration to obtain a retentate and a filtrate, the retentate is recycled into the bubble column reactor and the filtrate, in the presence of a hydrogenous gas at a second partial hydrogen pressure and at a second temperature, is passed over a bed of a second hydrogenation catalyst, wherein the second partial hydrogen pressure is at least 10 bar higher than the first partial hydrogen pressure.
    Type: Grant
    Filed: October 16, 2006
    Date of Patent: April 24, 2012
    Assignee: BASF SE
    Inventors: Bram Willem Hoffer, Hartwig Voβ, Ekkehard Schwab, Udo Rheude, Gerd Kaibel, Mathias Haake, Jan Eberhardt, Michael Karcher
  • Patent number: 8092655
    Abstract: A dividing wall column is described which includes the following segments: a) an upper column region (1), b) an enrichment section (2) of the feed section, c) a stripping section (4) of the feed section, d) an upper part (3) of the offtake section, e) a lower part (5) of the offtake section, f) an intermediate region (9) of the feed section, g) an intermediate region (10) of the offtake section and h) a lower column region (6). The dividing wall column has a dividing wall (7) is located vertically between the segments b) (2) and d) (3) and between the segments c) (4) and e) (5). The segments b) (2), d) (3), c) (4) and e) (5) have separation-active internals, Segment b (2) has a cross-sectional area Ab which is at least 10% smaller than the cross-sectional area Ad of segment d) (3), and segment c) has a cross-sectional area Ac which is at least 10% greater than the cross-sectional area Ae of segment e) (5).
    Type: Grant
    Filed: February 14, 2001
    Date of Patent: January 10, 2012
    Assignee: BASF Aktiengesellschaft
    Inventors: Wolfram Burst, Horst Hartmann, Gerd Kaibel, Guido Harms
  • Publication number: 20110319657
    Abstract: Process for obtaining formic acid by thermal separation of a stream comprising formic acid and a tertiary amine (I), in which a liquid stream comprising formic acid and a tertiary amine (I) in a molar ratio of from 0.5 to 5 is produced by combining tertiary amine (I) and a formic acid source, from 10 to 100% by weight of the secondary components present therein are separated off and formic acid is removed by distillation in a distillation apparatus at a bottom temperature of from 100 to 300° C. and a pressure of from 30 to 3000 hPa abs from the liquid stream obtained, the bottom discharge from the distillation apparatus being separated into two liquid phases and the upper liquid phase being recycled to the formic acid source and the lower liquid phase being recycled for separating off the secondary components and/or to the distillation apparatus.
    Type: Application
    Filed: June 29, 2011
    Publication date: December 29, 2011
    Applicant: BASF SE
    Inventors: Daniel Schneider, Klaus-Dieter Mohl, Martin Schäfer, Karin Pickenäcker, Stefan Rittinger, Thomas Schaub, Joaquim Henrique Teles, Rocco Paciello, Gerd Kaibel
  • Publication number: 20110313207
    Abstract: The invention relates to a process for distillative workup of a methanol/water mixture, in which a methanol/water mixture is added to a distillation column (1), an essentially methanol-comprising vapor stream is withdrawn at the top of the distillation column (1) and an essentially water-comprising bottom stream at the bottom of the distillation column (1), at least a portion of the essentially methanol-comprising vapor stream is compressed and the compressed vapor stream is added as heating vapor to an evaporator (11) in which at least a portion of the methanol/water mixture to be separated is evaporated.
    Type: Application
    Filed: February 17, 2010
    Publication date: December 22, 2011
    Inventors: Gerd Kaibel, Tilman Sirch, Raimund Felder, Josef Guth
  • Publication number: 20110168542
    Abstract: Apparatus and processes for continuous distillative separation of a mixture comprising one or more alkanolamine(s), wherein the separation is performed in one or more dividing wall column(s) and the alkanolamine or the alkanolamines is/are withdrawn as a side draw stream or side draw streams (side fraction(s)).
    Type: Application
    Filed: September 16, 2009
    Publication date: July 14, 2011
    Applicant: BASF SE
    Inventors: Willi Schmidt, Gerd Kaibel, Elke Geissler, Wolfgang Reif, Manfred Julius, Frank-Friedrich Pape
  • Publication number: 20110139604
    Abstract: A dividing wall column comprises the following segments: a) an upper column region (1), b) an enrichment section (2) of the feed section, c) a stripping section (4) of the feed section, d) an upper part (3) of the offtake section, e) a lower part (5) of the offtake section, f) an intermediate region (9) of the feed section, g) an intermediate region (10) of the offtake section and h) a lower column region (6). For the purposes of the present invention, it is essential that the dividing wall (7) is located vertically between the segments b) (2) and d) (3) and between the segments c) (4) and e) (5), the segments b) (2), d) (3), c) (4) and e) (5) have separation-active internals and the cross-sectional area Ab of the segment b) (2) is at least 10% smaller than the cross-sectional area Ad of segment d) (3), and the cross-sectional area Ac of the segment c) (4) is at least 10% greater than the cross-sectional area Ae of segment e) (5).
    Type: Application
    Filed: February 14, 2001
    Publication date: June 16, 2011
    Inventors: Wolfram Burst, Horst Hartmann, Gerd Kaibel, Guido Harms
  • Publication number: 20100162971
    Abstract: The invention relates to an apparatus for liquid cooling of an internal combustion engine (11) and a process for producing it. The apparatus of the invention comprises a cooling circuit (13) which comprises at least one cooling channel (23, 24, 41) for a liquid coolant which is in thermal contact with at least one component (12a, 12b, 31) of the internal combustion engine (11), wherein a wall of the cooling channel (23, 24, 41) which comes into contact with the coolant has a microstructured surface having a certain porosity and roughness at least in a subregion. According to the invention, such an apparatus is produced by constructing a cooling circuit for a liquid coolant which has cooling channels which can at least partly be brought into thermal contact with the internal combustion engine, wherein a microstructured surface is produced on at least part of the walls of the cooling channels which come into contact with the liquid coolant.
    Type: Application
    Filed: January 26, 2007
    Publication date: July 1, 2010
    Applicant: BASF SE
    Inventors: Claudius Kormann, Gerd Kaibel, Dirk Neumann
  • Publication number: 20100113805
    Abstract: What is described is a process for obtaining maleic anhydride by distillation from a solution of maleic anhydride in a high-boiling absorbent which has been obtained by gas phase oxidation of a hydrocarbon and at least partial absorption of the oxidation products into the absorbent, by i) introducing the solution into the side of a feed column with a rectifying section disposed above the feed point and a stripping section disposed below the feed point, ii) providing an upper combining column which communicates with the upper end of the rectifying section and a lower combining column which communicates with the lower end of the stripping section, iii) providing a draw column which communicates with the upper combining column and the lower combining column, iv) drawing maleic anhydride off as a side draw from the draw column, and drawing off compounds having a lower boiling point than maleic anhydride at the top of the upper combining column and the high-boiling absorbent at the bottom of the lower combining c
    Type: Application
    Filed: March 19, 2008
    Publication date: May 6, 2010
    Applicant: BASF SE
    Inventors: Gunther Windecker, Gerd Kaibel, Michael Steiniger, Thilo Buntrock, Jens Weiguny, Dany Vanden Hautte, Thierry Lurquin
  • Patent number: 7696360
    Abstract: The invention relates to a method for the separation of ascorbic acid from a mixture containing ascorbic acid and 2-keto-L-gulonic acid in a polar, preferably aqueous solvent, by means of liquid/liquid extraction using an amide. The method preferably also comprises steps for the back-extraction of the ascorbic acid, recycling of the extraction solvent and/or the back extraction solvent and for isolation of the ascorbic acid from the back extraction solvent. The invention further relates to a method for the production of ascorbic acid from KGA and isolation of the ascorbic acid so produced.
    Type: Grant
    Filed: July 7, 2003
    Date of Patent: April 13, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Gerd Kaibel, Martin Merger, Thomas Domschke, Petra Deckert, Friedrich Sauer
  • Publication number: 20100081804
    Abstract: A process is described for continuously hydrogenating unsaturated compounds, in which particles of a first hydrogenation catalyst are suspended in a liquid phase in which an unsaturated compound is dissolved, the liquid phase, in the presence of a hydrogenous gas at a first partial hydrogen pressure and at a first temperature, is conducted through a packed bubble column reactor in cocurrent counter to the direction of gravity, the effluent from the bubble column reactor is sent to a gas-liquid separation, the liquid phase is sent to a crossfiltration to obtain a retentate and a filtrate, the retentate is recycled into the bubble column reactor and the filtrate, in the presence of a hydrogenous gas at a second partial hydrogen pressure and at a second temperature, is passed over a bed of a second hydrogenation catalyst, wherein the second partial hydrogen pressure is at least 10 bar higher than the first partial hydrogen pressure.
    Type: Application
    Filed: October 16, 2006
    Publication date: April 1, 2010
    Inventors: Bram Willem Hoffer, Hartwig Voss, Ekkehard Schwab, Udo Rheude, Gerd Kaibel, Mathias Haake, Jan Eberhardt, Michael Karcher
  • Patent number: 7576246
    Abstract: The invention relates to a process and apparatus for the isothermal operation of heterogeneously catalyzed reactions involving at least three phases in the form of a gaseous phase, a liquid phase and a solid phase. The invention provides apparatus for carrying out reactions involving a gaseous phase, a liquid phase and a solid phase, comprising (i) a dispersing element for dispersing a gas phase in a liquid phase to generate a reaction fluid, (ii) at least one reactor which possesses an inlet, an outlet and a reactor space bounded by heat-removing walls which are spaced apart substantially uniformly along the main flow axis of the reaction fluid, and which is fitted with catalyst-coated metal fabric, and (iii) a feed line which routes the reaction fluid from the dispersing element to the reactor inlet and is sufficiently short that the degree of dispersion of the reaction fluid does not substantially change in the course of the passage through the feed line.
    Type: Grant
    Filed: July 31, 2000
    Date of Patent: August 18, 2009
    Assignee: BASF Aktiengesellschaft
    Inventors: Franz Josef Bröcker, Mathias Haake, Gerd Kaibel, Gerd Rohrbacher, Ekkehard Schwab, Manfred Stroezel