Patents by Inventor Gerd Schlick

Gerd Schlick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120029143
    Abstract: A process to produce a silane coating includes charging one or several silanes, which are not or only minimally pre-condensed, with a reactant and the thus created coating material is applied onto a substrate and then hardened. Surprisingly it has been shown that, through the reaction involving higher-molecular and only slightly pre-cross-linked silanes with a suitable reactant, a new class of coating materials can be created. The approach is advantageous insofar as restrictions with respect to pot time no longer exist and, in addition, better features of the coating material are obtained, especially a high scratch-resistance.
    Type: Application
    Filed: September 20, 2011
    Publication date: February 2, 2012
    Applicant: NANO-X GMBH
    Inventors: Stefan SEPEUR, Nora LARYEA, Carolin THURN, Gerd SCHLICK
  • Publication number: 20110082254
    Abstract: The invention relates to a method for the production of a highly abrasion-resistant vehicle paint, vehicle paint, and the use thereof. In order to create a vehicle paint having extremely high scratch and chemical resistance, particularly for use in multi-layer coating for OEM series coating (particularly as a clear coat or base cast), the invention proposes a method for the production of a highly abrasion-resistant vehicle paint, comprising the following steps: a. Providing at least one organic monomer, oligomer, prepolymer, or organosilane having one or more organic functional groups, or mixtures thereof; b. Saturating the functional groups described in a. by reacting them with silanes having organic side chains that contain one or more corresponding functional groups, the resultant silane having at least six SiOR groups and a molecular weight exceeding 300; c. Absorbing the resultant macro-molecular silanes in solvent, preferably protic or aprotic solvent, or mixtures thereof; d.
    Type: Application
    Filed: March 18, 2009
    Publication date: April 7, 2011
    Applicant: NANO-X GmbH
    Inventors: Stefan Sepeur, Nora Laryea, Carolin Thurn, Gerd Schlick
  • Publication number: 20090326146
    Abstract: The invention relates to a silane coating material and a process to produce silane coating. To produce a silane coating material according to the preamble, in which the above-mentioned drawbacks are avoided, according to the invention a process to produce a silane coating is proposed where one or several silanes, which are not or only minimally pre-condensed, are charged with a reactant and the thus created coating material is applied onto a substrate and then hardened. Surprisingly it has been shown that, through the reaction involving higher-molecular and only slightly pre-cross-linked silanes with a suitable reactant, a new class of coating materials can be created. According to the current state of the art, silanes are processed in sol-gel processes, where pre-condensated species are assumed.
    Type: Application
    Filed: September 10, 2007
    Publication date: December 31, 2009
    Inventors: Stefan Sepeur, Nora Laryea, Carolin Thurn, Gerd Schlick
  • Publication number: 20090238986
    Abstract: The invention relates to alkali-resistant sol-gel coatings, a process for producing alkali-resistant sol-gel coatings and use thereof. To provide alkali-resistant sol-gel coatings, a coating is proposed within the scope of the invention that consists of a hydrolysable silane of the compounds TEOS, MTEOS or higher-chain alkyl silanes (di- tri- and tetrafunctional silanes), but preferably TEOS, MTEOS or mixtures thereof and a condensation catalyst based on a) secondary or tertiary bases (e.g. amino, mercaptosilanes) and/or b) Lewis acids as metal alkoxides, such as aluminium alkoxides, zirconium alkoxides and titanium alkoxides where the ratio (in wt. %) of hydroysable silane to condensation catalyst is between 99:1 and 70:30.
    Type: Application
    Filed: June 12, 2006
    Publication date: September 24, 2009
    Inventors: Frank Gross, Gerd Schlick, Stefan Sepeur