Patents by Inventor Gerd Schlottig

Gerd Schlottig has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240118333
    Abstract: An apparatus for performing the following. The apparatus maintains, in a memory, information on a computational model for thermal behavior of layers of an insulated-gate bipolar transistor, IGBT, module. The apparatus obtains measurements of the dissipated power at the semiconductors and the ambient temperature and determines one or more current values of one or more temperatures of the IGBT module based on a switching delay of the IGBT module. The apparatus calculates a current estimate of a joint state-parameter space of the computational model using a Bayesian filter and the computational model taking as inputs the dissipated power and the ambient temperature. The joint state-parameter space includes the one or more temperatures, one or more thermal loss parameters and one or more wear parameters. The one or more current values of the one or more temperatures are used as observations in the Bayesian filter.
    Type: Application
    Filed: September 12, 2023
    Publication date: April 11, 2024
    Inventors: Aleksi Vulli, Gerd Schlottig, Enea Bianda, Michal Orkisz, Marcin Firla
  • Publication number: 20230048878
    Abstract: A power semiconductor module includes a substrate with a metallization layer that is structured. A semiconductor chip having a first side bonded to the metallization layer. A metal clip, which is a strip of metal, has a first planar part bonded to a second side of the semiconductor chip opposite to the first side. The metal clip also has a second planar part bonded to the metallization layer. A mold encapsulation at least partially encloses the substrate and the metal clip. The mold encapsulation has a recess approaching towards the first planar part of the metal clip. The semiconductor chip is completely enclosed by the mold encapsulation, the substrate and the metal clip and the first planar part of the metal clip is at least partially exposed by the recess. A sensor is accommodated in the recess.
    Type: Application
    Filed: January 27, 2021
    Publication date: February 16, 2023
    Inventors: Juergen Schuderer, Niko Pavlicek, Chunlei Liu, Arne Schroeder, Gerd Schlottig
  • Patent number: 11251160
    Abstract: Manufacturing of flip-chip type assemblies is provided, and includes forming one or more contact elements of electrically conductive material on a carrier surface of at least one chip carrier, providing a restrain structure around the contact elements, depositing solder material on the contact elements and/or on one or more terminals of electrically conductive material on a chip surface of at least one integrated circuit chip, and placing the chip with each terminal facing corresponding contact elements. Further, the method includes soldering each terminal to the corresponding contact element by a soldering material, the soldering material being restrained during a soldering of the terminals to the contact elements by the restrain structure, and forming one or more heat dissipation elements of thermally conductive material on the carrier surface for facing the chip surface displaced from the terminals, where the one or more heat dissipation elements are free of any solder mask.
    Type: Grant
    Filed: July 31, 2020
    Date of Patent: February 15, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stefano Oggioni, Thomas Brunschwiler, Gerd Schlottig
  • Patent number: 10886254
    Abstract: A solution relating to electronic devices of flip-chip type is provided, which includes at least one chip carrier having a carrier surface, the carrier(s) including one or more contact elements of electrically conductive material on the carrier surface, at least one integrated circuit chip having a chip surface, the chip(s) including one or more terminals of electrically conductive material on the chip surface each one facing a corresponding contact element, solder material soldering each terminal to the corresponding contact element, and a restrain structure around the contact elements for restraining the solder material during a soldering of the terminals to the contact elements. The carrier includes one or more heat dissipation elements of thermally conductive material on the carrier surface facing the chip surface displaced from the terminals, the dissipation elements being free of any solder mask.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: January 5, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stefano Oggioni, Thomas Brunschwiler, Gerd Schlottig
  • Publication number: 20200357774
    Abstract: Manufacturing of flip-chip type assemblies is provided, and includes forming one or more contact elements of electrically conductive material on a carrier surface of at least one chip carrier, providing a restrain structure around the contact elements, depositing solder material on the contact elements and/or on one or more terminals of electrically conductive material on a chip surface of at least one integrated circuit chip, and placing the chip with each terminal facing corresponding contact elements. Further, the method includes soldering each terminal to the corresponding contact element by a soldering material, the soldering material being restrained during a soldering of the terminals to the contact elements by the restrain structure, and forming one or more heat dissipation elements of thermally conductive material on the carrier surface for facing the chip surface displaced from the terminals, where the one or more heat dissipation elements are free of any solder mask.
    Type: Application
    Filed: July 31, 2020
    Publication date: November 12, 2020
    Inventors: Stefano OGGIONI, Thomas BRUNSCHWILER, Gerd SCHLOTTIG
  • Patent number: 10767939
    Abstract: A disconnect assembly includes a solid frame comprising a slit and a first liquid coolant circuit leading to a frame outlet defined in an inner wall of the slit. The assembly further includes an insert element, insertable in the slit so as to reach a sealing position. The latter defines a shut state, in which the insert element seals the frame outlet. The assembly includes a cold plate, comprising a second liquid coolant circuit with a duct open on a side of the cold plate. The cold plate can be inserted in the slit, so as to push the insert element, for the latter to leave the sealing position and the cold plate to reach a fluid communication position. This position defines an open state, in which the duct is vis-à-vis the frame outlet, to enable fluid communication between the first liquid coolant circuit and the second liquid coolant circuit.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: September 8, 2020
    Assignee: International Business Machines Corporation
    Inventors: Gerd Schlottig, Stephan Paredes, Ingmar G. Meijer, Thomas Brunschwiler
  • Patent number: 10763189
    Abstract: An embodiment of the invention may include a sealing apparatus. The sealing apparatus may include a first component having a body, where the body has an outer surface and a first arm protruding from the outer surface. The first arm includes an inner surface facing the outer surface of the body. The sealing apparatus may include a second component engaged by the first arm of the first component. The second component may have a first portion arranged inside a space between the inner surface of the first arm and the outer surface of the body and a second portion arranged outside of the space and adjacent to an outer surface of the first arm.
    Type: Grant
    Filed: August 19, 2015
    Date of Patent: September 1, 2020
    Assignee: International Business Machines Corporation
    Inventors: Ingmar G. Meijer, Stefano S. Oggioni, Stephan Paredes, Gerd Schlottig
  • Patent number: 10727159
    Abstract: A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: July 28, 2020
    Assignee: International Business Machines Corporatin
    Inventors: Thomas J. Brunschwiler, Timothy J. Chainer, Evan G. Colgan, Arvind Raj Mahankali Sridhar, Chin Lee Ong, Pritish R. Parida, Gerd Schlottig, Mark D. Schultz, Joel A. Silberman
  • Patent number: 10727158
    Abstract: A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
    Type: Grant
    Filed: November 20, 2019
    Date of Patent: July 28, 2020
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Timothy J. Chainer, Evan G. Colgan, Arvind Raj Mahankali Sridhar, Chin Lee Ong, Pritish R. Parida, Gerd Schlottig, Mark D. Schultz, Joel A. Silberman
  • Publication number: 20200118907
    Abstract: A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
    Type: Application
    Filed: December 6, 2019
    Publication date: April 16, 2020
    Inventors: Thomas J. Brunschwiler, Timothy J. Chainer, Evan G. Colgan, Arvind Raj Mahankali Sridhar, Chin Lee Ong, Pritish R. Parida, Gerd Schlottig, Mark D. Schultz, Joel A. Silberman
  • Publication number: 20200091037
    Abstract: A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
    Type: Application
    Filed: November 20, 2019
    Publication date: March 19, 2020
    Inventors: Thomas J. Brunschwiler, Timothy J. Chainer, Evan G. Colgan, Arvind Raj Mahankali Sridhar, Chin Lee Ong, Pritish R. Parida, Gerd Schlottig, Mark D. Schultz, Joel A. Silberman
  • Publication number: 20200072562
    Abstract: A disconnect assembly includes a solid frame comprising a slit and a first liquid coolant circuit leading to a frame outlet defined in an inner wall of the slit. The assembly further includes an insert element, insertable in the slit so as to reach a sealing position. The latter defines a shut state, in which the insert element seals the frame outlet. The assembly includes a cold plate, comprising a second liquid coolant circuit with a duct open on a side of the cold plate. The cold plate can be inserted in the slit, so as to push the insert element, for the latter to leave the sealing position and the cold plate to reach a fluid communication position. This position defines an open state, in which the duct is vis-à-vis the frame outlet, to enable fluid communication between the first liquid coolant circuit and the second liquid coolant circuit.
    Type: Application
    Filed: October 28, 2019
    Publication date: March 5, 2020
    Inventors: Gerd Schlottig, Stephan Paredes, Ingmar G. Meijer, Thomas Brunschwiler
  • Patent number: 10551132
    Abstract: A heat removal element comprises a deformable frame, having a first coefficient of thermal expansion. The frame includes a set of separate cavities formed in the frame, the set including a first cavity and a second cavity; and on one side of the first cavity, a deformable wall adapted to provide mechanical compliance with a heat source for transferring heat away from the heat source. The second cavity comprises a material that fills, at least partly, the second cavity, this material having a second coefficient of thermal expansion that differs from the first coefficient of thermal expansion.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: February 4, 2020
    Assignee: International Business Machines Corporation
    Inventors: Gerd Schlottig, Gerhard I. Meijer
  • Publication number: 20200011617
    Abstract: A disconnect assembly includes a solid frame comprising a slit and a first liquid coolant circuit leading to a frame outlet defined in an inner wall of the slit. The assembly further includes an insert element, insertable in the slit so as to reach a sealing position. The latter defines a shut state, in which the insert element seals the frame outlet. The assembly includes a cold plate, comprising a second liquid coolant circuit with a duct open on a side of the cold plate. The cold plate can be inserted in the slit, so as to push the insert element, for the latter to leave the sealing position and the cold plate to reach a fluid communication position. This position defines an open state, in which the duct is vis-à-vis the frame outlet, to enable fluid communication between the first liquid coolant circuit and the second liquid coolant circuit.
    Type: Application
    Filed: July 9, 2018
    Publication date: January 9, 2020
    Inventors: Gerd Schlottig, Stephan Paredes, Ingmar G. Meijer, Thomas Brunschwiler
  • Patent number: 10527365
    Abstract: A disconnect assembly includes a solid frame comprising a slit and a first liquid coolant circuit leading to a frame outlet defined in an inner wall of the slit. The assembly further includes an insert element, insertable in the slit so as to reach a sealing position. The latter defines a shut state, in which the insert element seals the frame outlet. The assembly includes a cold plate, comprising a second liquid coolant circuit with a duct open on a side of the cold plate. The cold plate can be inserted in the slit, so as to push the insert element, for the latter to leave the sealing position and the cold plate to reach a fluid communication position. This position defines an open state, in which the duct is vis-à-vis the frame outlet, to enable fluid communication between the first liquid coolant circuit and the second liquid coolant circuit.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Gerd Schlottig, Stephan Paredes, Ingmar G. Meijer, Thomas Brunschwiler
  • Patent number: 10529648
    Abstract: A structure for cooling an integrated circuit. The structure may include; an interposer cold plate having at least two expanding channels, each expanding channel having a flow direction from a channel inlet to a channel outlet, the flow direction having different directions for at least two of the at least two expanding channels, the channel inlet having an inlet width and the channel outlet having an outlet width, wherein the inlet width is less than the outlet width.
    Type: Grant
    Filed: February 13, 2018
    Date of Patent: January 7, 2020
    Assignee: International Business Machines Corporation
    Inventors: Thomas J. Brunschwiler, Timothy J. Chainer, Evan G. Colgan, Arvind Raj Mahankali Sridhar, Chin Lee Ong, Pritish R. Parida, Gerd Schlottig, Mark D. Schultz, Joel A. Silberman
  • Patent number: 10388540
    Abstract: This invention relates to cooling devices for multi-chip semiconductor devices, system-on-a-package devices, and other packaged devices. Because of the non-uniform height across the surface in such large-chip and multi-chip assemblies, providing heat exchange can be troublesome. Many air cooled heat sinks are too stiff to adapt to such non-uniform or warped shapes of chips or to shape-changing chip surfaces during operation. In the present disclosure, application of a mechanical load perpendicular to the chip plane causes certain features to flex and adapt to the non-uniform height of the chip plane, providing improved heat exchange.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: August 20, 2019
    Assignee: International Business Machines Corporation
    Inventors: Thomas Brunschwiler, Ingmar Meijer, Stephan Paredes, Gerd Schlottig
  • Publication number: 20190162484
    Abstract: A heat removal element comprises a deformable frame, having a first coefficient of thermal expansion. The frame includes a set of separate cavities formed in the frame, the set including a first cavity and a second cavity; and on one side of the first cavity, a deformable wall adapted to provide mechanical compliance with a heat source for transferring heat away from the heat source. The second cavity comprises a material that fills, at least partly, the second cavity, this material having a second coefficient of thermal expansion that differs from the first coefficient of thermal expansion.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Gerd Schlottig, Gerhard I. Meijer
  • Publication number: 20190043838
    Abstract: A solution relating to electronic devices of flip-chip type is provided, which includes at least one chip carrier having a carrier surface, the carrier(s) including one or more contact elements of electrically conductive material on the carrier surface, at least one integrated circuit chip having a chip surface, the chip(s) including one or more terminals of electrically conductive material on the chip surface each one facing a corresponding contact element, solder material soldering each terminal to the corresponding contact element, and a restrain structure around the contact elements for restraining the solder material during a soldering of the terminals to the contact elements. The carrier includes one or more heat dissipation elements of thermally conductive material on the carrier surface facing the chip surface displaced from the terminals, the dissipation elements being free of any solder mask.
    Type: Application
    Filed: September 28, 2018
    Publication date: February 7, 2019
    Inventors: Stefano OGGIONI, Thomas BRUNSCHWILER, Gerd SCHLOTTIG
  • Publication number: 20180374771
    Abstract: A compliant heat sink for transporting heat away from at least one electronic component, the heat sink includes a body, where the body includes a flexible element thermally contacting at least one electronic component. The heat sink further includes a cavity located in the body, where the cavity is at least partially covered by the flexible element. The heat sink further includes a raised member of the body coupled to the flexible element, where a portion of the raised member partially extends into the cavity. The heat sink further includes a guiding structure of the body coupled in the cavity of the body, wherein the guiding structure is adapted for guiding the movement of the raised member in a moving direction.
    Type: Application
    Filed: June 27, 2017
    Publication date: December 27, 2018
    Inventors: Gerhard I. Meijer, Gerd Schlottig