Patents by Inventor Gereon Huettmann

Gereon Huettmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11421979
    Abstract: The invention relates to a method for creating a two-dimensional interferogram with a Michelson-type free-beam interferometer, comprising an extended, partially spatially coherent light source and a two-dimensional light detector, wherein light from the light source is split by a beam splitter with a semitransparent beam splitter mirror into a sample light beam and a reference light beam and taken to a sample arm and a reference arm, wherein the sample light beam returning from a sample is directed by the beam splitter mirror onto the light detector, wherein the reference light beam emerging from the reference arm makes a predetermined angle greater than zero with the sample light beam on the light detector, and wherein the length of the reference arm is variable, where the reference light beam is directed by means of an odd number of reflections in each reflection plane in at least one reference arm section so that it is displaced laterally to itself and travels antiparallel through a light-deflecting elemen
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: August 23, 2022
    Assignee: VISOTEC GMBH
    Inventors: Michael Münst, Helge Sudkamp, Peter Koch, Gereon Hüttmann
  • Publication number: 20210310958
    Abstract: The invention relates to a dosimeter material for ammonia and/or amines, the indicator used, as well as processes for their manufacture and use, in particular for quality control of foodstuffs. The dosimeter material for ammonia and/or amines, in particular in the gas phase, comprises an indicator which undergoes an irreversible color change in the presence of ammonia and/or amines, and an immobilization matrix for the indicator that is permeable to ammonia and/or amines, wherein the immobilization matrix is water-impermeable, and wherein the indicator comprises a phosphorus porphyrin activated by covalent bonding to a silanol group and having the formula porphyrin-P(V)X3, wherein X is Cl or Br.
    Type: Application
    Filed: July 26, 2019
    Publication date: October 7, 2021
    Inventors: Ramtin Rahmanzadeh, Gereon Huettmann, Christian Schell
  • Publication number: 20210038074
    Abstract: The invention relates to a full-field OCT method for generating an imaging of an ocular fundus (31), in which short-coherent light (22) is emitted and split into an object beam path (25) and a reference beam path (24). The object beam path (25) is directed onto the ocular fundus (33). The reference beam path (24) and a portion of the object beam path (25) reflected by the ocular fundus (31) are directed onto an image sensor (32), such that an interference between the reference beam path (24) and the object beam path (25) occurs on the image sensor (32), wherein the reference beam path (24) impinges on the image sensor (32) at an angle deviating from the object beam path (25). Before impinging on the image sensor (32), the reference beam path (24) impinges on an optical correction element (27) in order to reduce a chromatic aberration within the reference beam path (24). Intensity information and phase information is determined from a capturing of the image sensor.
    Type: Application
    Filed: January 23, 2019
    Publication date: February 11, 2021
    Inventors: Peter Koch, Gereon Hüttmann, Helge Sudkamp, Hendrik Spahr, Dierck Hillmann, Michael Münst
  • Publication number: 20200393236
    Abstract: The invention relates to a method for creating a two-dimensional interferogram with a Michelson-type free-beam interferometer, comprising an extended, partially spatially coherent light source and a two-dimensional light detector, wherein light from the light source is split by a beam splitter with a semitransparent beam splitter mirror into a sample light beam and a reference light beam and taken to a sample arm and a reference arm, wherein the sample light beam returning from a sample is directed by the beam splitter mirror onto the light detector, wherein the reference light beam emerging from the reference arm makes a predetermined angle greater than zero with the sample light beam on the light detector, and wherein the length of the reference arm is variable, where the reference light beam is directed by means of an odd number of reflections in each reflection plane in at least one reference arm section so that it is displaced laterally to itself and travels antiparallel through a light-deflecting elemen
    Type: Application
    Filed: January 25, 2019
    Publication date: December 17, 2020
    Inventors: Michael MÜNST, Helge SUDKAMP, Peter KOCH, Gereon HÜTTMANN
  • Patent number: 10743766
    Abstract: A parallel detecting optical coherence tomography (OCT) setup and method, in which the light paths of the illumination of the sample and of the detection of the backscattered light do not use the same apertures. The separation of illumination and detection apertures filters these disturbing reflexes from the backscattered light of the sample and significantly increases image quality.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: August 18, 2020
    Assignee: THORLABS GMBH
    Inventors: Dierck Hillmann, Gereon Hüttmann, Gesa Lilith Franke, Helge Sudkamp, Laura Hinkel, Peter Koch, Jörn Wollenzin
  • Patent number: 10682052
    Abstract: The invention relates to an interferometric method, in which the light scattered by an object is imaged onto an electronic camera, wherein a sample light component is assigned to scattering sites on a sectional face in the interior of the object. This sample light component can be separated from the contributions of the other sample light components by processing of the camera image and leads to a sectional image. A particular advantage of the invention lies in the fact that multiple parallel sectional faces can be exposed sequentially at predetermined intervals from each other in the interior of the object. Such a sequence of sectional images can be used to calculate a solid model of the object.
    Type: Grant
    Filed: August 9, 2016
    Date of Patent: June 16, 2020
    Assignees: Medizinisches Laserzentrum Luebeck GmbH, Thorlabs GmbH
    Inventors: Peter Koch, Gesa Franke, Hendrik Spahr, Helge Sudkamp, Gereon Hüttmann, Dierck Hillmann, Reginald Birngruber
  • Publication number: 20180368680
    Abstract: A parallel detecting optical coherence tomography (OCT) setup and method, in which the light paths of the illumination of the sample and of the detection of the backscattered light do not use the same apertures. The separation of illumination and detection apertures filters these disturbing reflexes from the backscattered light of the sample and significantly increases image quality.
    Type: Application
    Filed: August 29, 2018
    Publication date: December 27, 2018
    Inventors: Dierck HILLMANN, Gereon HÜTTMANN, Gesa Lilith FRANKE, Helge SUDKAMP, Laura HINKEL, Peter KOCH, Jörn WOLLENZIN
  • Patent number: 10070788
    Abstract: A parallel detecting optical coherence tomography (OCT) setup and method, in which the light paths of the illumination of the sample and of the detection of the backscattered light do not use the same apertures. The separation of illumination and detection apertures filters these disturbing reflexes from the backscattered light of the sample and significantly increases image quality.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: September 11, 2018
    Assignee: THORLABS GMBH
    Inventors: Dierck Hillmann, Gereon Hüttmann, Gesa Lilith Franke, Helge Sudkamp, Laura Hinkel, Peter Koch, Jörn Wollenzin
  • Publication number: 20180235461
    Abstract: The invention relates to an interferometric method, in which the light scattered by an object is imaged onto an electronic camera, wherein a sample light component is assigned to scattering sites on a sectional face in the interior of the object. This sample light component can he separated from the contributions of the other sample light components by processing of the camera image and leads to a sectional image. A particular advantage of the invention lies in the fact that multiple parallel sectional faces can be exposed sequentially at predetermined intervals from each other in the interior of the object. Such a sequence of sectional images can be used to calculate a solid model of the object. The invention is applicable in particular to the live retina and allows a three-dimensional retina scan within a few seconds with a cost-effective and, if necessary, hand-held device. Application options are in the fields of ophthalmology and in biometry.
    Type: Application
    Filed: August 9, 2016
    Publication date: August 23, 2018
    Applicants: Thorlabs GmbH, Medizinisches Laserzentrum Lübeck GmbH
    Inventors: Peter KOCH, Gesa FRANKE, Hendrik SPAHR, Helge SUDKAMP, Gereon HÜTTMANN, Dierck HILLMANN, Reginald BIRNGRUBER
  • Publication number: 20150216412
    Abstract: A parallel detecting optical coherence tomography (OCT) setup and method, in which the light paths of the illumination of the sample and of the detection of the backscattered light do not use the same apertures. The separation of illumination and detection apertures filters these disturbing reflexes from the backscattered light of the sample and significantly increases image quality.
    Type: Application
    Filed: January 30, 2015
    Publication date: August 6, 2015
    Inventors: Dierck HILLMANN, Gereon HÜTTMANN, Gesa Lilith FRANKE, Helge SUDKAMP, Laura HINKEL, Peter KOCH, Jörn WOLLENZIN
  • Patent number: 8774904
    Abstract: A device for examining or treating living tissue by means of local heating of the tissue by absorbing electromagnetic radiation, with at least one radiation source emitting electromagnetic radiation, a control unit for controlling the irradiation parameters of the radiation source, and at least one FD-OCT apparatus with a light source emitting a measurement light for illuminating that tissue region in which the electromagnetic radiation is absorbed by the tissue, characterized by a computational unit for carrying out the following steps: determining the depth-resolved tissue velocity in the radiation direction of the measurement light at a predetermined measurement point of the tissue from the phase information from the FD-OCT interference light, integrating the established tissue velocity over time, differentiating the calculated time integral with respect to space, and displaying the spatial derivative as a function of space and time and/or feeding the spatial derivative as a function of space and time to a
    Type: Grant
    Filed: April 16, 2011
    Date of Patent: July 8, 2014
    Assignee: Medizinisches Laserzentrum Luebeck GmbH
    Inventors: Reginald Birngruber, Ralf Brinkmann, Gereon Huettmann, Heike Mueller
  • Publication number: 20130102894
    Abstract: A device for examining or treating living tissue by means of local heating of the tissue by absorbing electromagnetic radiation, with at least one radiation source emitting electromagnetic radiation, a control unit for controlling the irradiation parameters of the radiation source, and at least one FD-OCT apparatus with a light source emitting a measurement light for illuminating that tissue region in which the electromagnetic radiation is absorbed by the tissue, characterized by a computational unit for carrying out the following steps: determining the depth-resolved tissue velocity in the radiation direction of the measurement light at a predetermined measurement point of the tissue from the phase information from the FD-OCT interference light, integrating the established tissue velocity over time, differentiating the calculated time integral with respect to space, and displaying the spatial derivative as a function of space and time and/or feeding the spatial derivative as a function of space and time to a
    Type: Application
    Filed: April 16, 2011
    Publication date: April 25, 2013
    Applicant: MEDIZINISCHES LASERZENTRUM LUEBECK GMBH
    Inventors: Reginald Birngruber, Ralf Brinkmann, Gereon Huettmann, Heike Mueller
  • Patent number: 7961333
    Abstract: A method is provided for the electronic scanning of the intensity distribution of an optical interference pattern by means of a linear image sensor, wherein the interference pattern is produced by overlapping two temporally partly coherent beams striking at an arbitrarily predefined angle ? in relation to one another and is provided with an interference strip having a carrier frequency greater than the scanning frequency, and amplitude modulation that can be varied slowly in relation to the pixel width, wherein at least one optical grating is disposed in the beam path of at least one of two incident beams and the image sensor is disposed in the diffraction image of the grating(s) such that, at the site of the image sensor, the beams interfere, and the beams enclose an angle ? at the site of the image sensor, the angle being smaller than ?.
    Type: Grant
    Filed: July 4, 2007
    Date of Patent: June 14, 2011
    Assignee: Universitaet Zu Luebeck
    Inventors: Gereon Huettmann, Peter Koch
  • Publication number: 20100292539
    Abstract: An apparatus for optical coherence tomography has a broadband light source with a short coherence length, an optical fiber that guides the light from the light source to a focusing optics, and a graded-index optics arranged between the optical fiber and the focusing optics with two opposite parallel flat sides, that is contacted on its first flat side by the optical fiber forming an irradiation point guiding light to the graded-index optics and having a pitch of N/8, N being a natural number that cannot be divided by 4. A first structure for light reflection is arranged on the first flat side of the graded-index optics adjacent to the irradiation point, and a second structure for beam splitting is arranged on the second flat side of the graded-index optics. The focusing optics are designed for focusing the light transmitted by the second structure essentially at right angles to the flat sides of the graded-index optics.
    Type: Application
    Filed: May 14, 2010
    Publication date: November 18, 2010
    Applicant: Medizinisches Laserzentrum Luebeck GmbH
    Inventors: Eva Lankenau, Tim Bonin, Gereon Huettmann
  • Publication number: 20100020328
    Abstract: A method is provided for the electronic scanning of the intensity distribution of an optical interference pattern by means of a linear image sensor, wherein the interference pattern is produced by overlapping two temporally partly coherent beams striking at an arbitrarily predefined angle ? in relation to one another and is provided with an interference strip having a carrier frequency greater than the scanning frequency, and amplitude modulation that can be varied slowly in relation to the pixel width, wherein at least one optical grating is disposed in the beam path of at least one of two incident beams and the image sensor is disposed in the diffraction image of the grating(s) such that, at the site of the image sensor, the beams interfere, and the beams enclose an angle ? at the site of the image sensor, the angle being smaller than ?.
    Type: Application
    Filed: July 4, 2007
    Publication date: January 28, 2010
    Applicant: UNIVERSITAET ZU LUEBECK
    Inventors: Gereon Huettmann, Peter Koch
  • Patent number: 7484665
    Abstract: This invention relates to a method for reading, while using optical interference, a barcode that extends into the depth of a substrate. The barcode is represented by an area with marks in the substrate that is partially transparent to electromagnetic radiation. The inventive method comprises the steps of irradiating the substrate with short coherence length light from a broad-band light source, dividing the light up into reference light and measuring light, returning the reference light and the measuring light back-scattered or reflected in the marked area to an analytical unit, determining the reflectance or the reflectivity of the substrate for all layer depths in the marked area from the interference of the reference light and the measuring light and interpreting the result as a barcode.
    Type: Grant
    Filed: March 13, 2004
    Date of Patent: February 3, 2009
    Assignee: Medizinisches Laserzentrum Luebeck
    Inventors: Peter Koch, Gereon Huettmann, Edmund Koch, Eva Lankenau
  • Patent number: 6970620
    Abstract: In the region of a distal end at its circumference the waveguide is formed transparent to the radiation which impinges onto the surface of the waveguide at suitable angles, and in the region of the distal end in the inside of the waveguide there are arranged scatter elements which scatter radiation transmitted by the waveguide in the direction of the distal end in a direction with a proximally directed component which exits the circumference of the waveguide. Alternatively, radiation entering into the waveguide at the circumference of the waveguide in a direction with a distally directed component is transmitted by the waveguide in the direction of the proximal end, as well as to its use and to a method for its manufacture.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: November 29, 2005
    Assignee: Richard Wolf GmbH
    Inventors: Lars Ziegenhagen, Gereon Hüttmann