Patents by Inventor Gerhard Eckert

Gerhard Eckert has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10768034
    Abstract: The present disclosure relates to a measurement sensor of the vibrational type for measuring the density and/or the mass flow of a medium, including: two oscillators; an exciter for stimulating oscillator vibrations; and two vibration sensors, wherein the first oscillator includes first and second measuring tubes and a first resilient vibration coupler for coupling the measuring tubes, wherein the second oscillator includes third and fourth measuring tubes and a second resilient vibration coupler for coupling the third and fourth measuring tubes, wherein perpendicularly to a measuring tube transverse plane a measurement sensor longitudinal plane extends between the third and the fourth measuring tube, wherein the first and third measuring tube relative to a measurement sensor longitudinal plane are in mirror symmetry relative to one another, and wherein the second and fourth measuring tube relative to the measurement sensor longitudinal plane are in mirror symmetry relative to one another.
    Type: Grant
    Filed: November 22, 2017
    Date of Patent: September 8, 2020
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hao Zhu, Alfred Rieder, Ennio Bitto, Gerhard Eckert
  • Patent number: 10724883
    Abstract: The invention relates to a method for ascertaining a physical parameter of a gas using a measuring transducer having a measuring tube for conveying the gas, wherein the measuring tube is excitable to execute bending oscillations of different modes and eigenfrequencies, the method includes: ascertaining the eigenfrequency of the f1-mode and f3-mode; ascertaining preliminary density values for the gas based on the eigenfrequencies of the f1-mode and f3-mode; ascertaining a value for the velocity of sound of the gas, and/or, dependent on the velocity of sound and the eigenfrequency of a mode, at least one correcting term and/or density error for the preliminary density value; and/or a correcting term for a preliminary mass flow value for determining a corrected mass flow measured value based on the first preliminary density value, the second preliminary density value, the eigenfrequencies of the f1-mode and f3-mode.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: July 28, 2020
    Assignee: Endress+Hauser Flowtec AG
    Inventors: Hao Zhu, Alfred Rieder, Gerhard Eckert
  • Publication number: 20200049543
    Abstract: The measuring system comprises a transducer apparatus (MT) with two tubes (11, 12), each of which has a lumen (11?) surrounded by a wall, especially a metal wall and extends from an inlet side end (11a, 12a) to an outlet side end (11b, 12b) Each of the two tubes is adapted to be flowed through by a fluid, starting from an inlet side end and proceeding toward an outlet side end, and, during that, to be caused to vibrate. An electromechanical- exciter mechanism formed by means of at least one oscillation exciter (41) serves for exciting and maintaining mechanical oscillations of each of the tubes about their associated static resting positions and a sensor arrangement (S) formed by means of at least one oscillation sensor (51) serves for registering mechanical oscillations of at least one of the tubes (11, 12).
    Type: Application
    Filed: June 26, 2017
    Publication date: February 13, 2020
    Inventors: Alfred RIEDER, Gerhard ECKERT, Ennio BITTO, Hao ZHU
  • Patent number: 10533884
    Abstract: A measuring transducer for registering and/or monitoring at least one process variable of a flowable medium guided in a pipeline, which at least includes: a housing module, which is mechanically coupled with the pipeline via an inlet end and an outlet end, and a sensor module having at least one measuring tube held oscillatably at least partially in the housing module and caused, at least at times, to oscillate. The at least one component of the housing module and/or of the sensor module is manufactured by means of a generative method and method for manufacturing at least one component of a measuring transducer, which method includes manufacturing the at least one component by means of a primary forming process, especially by means of a layered applying and/or melting-on of a powder, especially a metal powder, based on a digital data set, which gives at least the shape and/or the material and/or the structure of the at least one component.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: January 14, 2020
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Martin Josef Anklin, Gerhard Eckert, Christian Schutze, Ennio Bitto, Christof Huber, Claude Hollinger, Alfred Rieder, Michael Kirst
  • Publication number: 20190383658
    Abstract: The present disclosure relates to a vibration-type sensor for measuring the density and/or the mass flow rate of a medium, having at least one first oscillator, the sensor including: a curved first measuring tube; a curved second measuring tube; at least one first elastic vibration coupler that couples the first measuring tube and the second measuring tube to each; and at least one exciter for exciting oscillator vibrations in a bending vibration mode. The oscillator has a first oscillator resonant frequency for when the measuring tubes vibrate approximately in phase in the bending vibration mode and a greater second oscillator resonant frequency for when the measuring tubes vibrate approximately in counterphase in the bending vibration mode. The first and second measuring tubes have resonant frequencies differing from their arithmetic mean by no more than 8%, no more than 4%, no more than 2% or no more than 1%.
    Type: Application
    Filed: November 22, 2017
    Publication date: December 19, 2019
    Inventors: Hao Zhu, Alfred Rieder, Ennio Bitto, Gerhard Eckert
  • Publication number: 20190383656
    Abstract: The present disclosure relates to a measurement sensor of the vibrational type for measuring the density and/or the mass flow of a medium, including: two oscillators; an exciter for stimulating oscillator vibrations; and two vibration sensors, wherein the first oscillator includes first and second measuring tubes and a first resilient vibration coupler for coupling the measuring tubes, wherein the second oscillator includes third and fourth measuring tubes and a second resilient vibration coupler for coupling the third and fourth measuring tubes, wherein perpendicularly to a measuring tube transverse plane a measurement sensor longitudinal plane extends between the third and the fourth measuring tube, wherein the first and third measuring tube relative to a measurement sensor longitudinal plane are in mirror symmetry relative to one another, and wherein the second and fourth measuring tube relative to the measurement sensor longitudinal plane are in mirror symmetry relative to one another.
    Type: Application
    Filed: November 22, 2017
    Publication date: December 19, 2019
    Inventors: Hao Zhu, Alfred Rieder, Ennio Bitto, Gerhard Eckert
  • Publication number: 20190376831
    Abstract: The measuring system comprises a transducer apparatus (MT) with two tubes (11, 12), each of which has a lumen (11?) surrounded by a wall, especially a metal wall and extends from an inlet side end (11a, 12a) to an outlet side end (11b, 12b) Each of the two tubes is adapted to be flowed through by a fluid, starting from an inlet side end and proceeding toward an outlet side end, and, during that, to be caused to vibrate. An electromechanical-exciter mechanism formed by means of at least one oscillation exciter (41) serves for exciting and maintaining mechanical oscillations of each of the tubes (11, 12) about their associated static resting positions and a sensor arrangement (S) formed by means of at least one oscillation sensor (51) serves for registering mechanical oscillations of at least one of the tubes (11, 12).
    Type: Application
    Filed: June 26, 2017
    Publication date: December 12, 2019
    Inventors: Alfred RIEDER, Gerhard ECKERT, Ennio BITTO, Hao ZHU
  • Patent number: 10466151
    Abstract: A method is provided for measuring density of a fluid by means of at least one at least sectionally curved measuring tube. The measuring tube is adapted to be flowed through by the fluid and concurrently to be caused to vibrate over a wanted oscillatory length, namely a tube length measured from a first tube end to a second tube end, a length which is greater than a minimum separation of the second tube end from the first tube end. According to the invention, among other things, also a tilt measured value representing an inclination of the at least one measuring tube in the static resting position relative to a local acceleration of gravity is ascertained, in such a manner that such represents an angle of intersection between a direction vector of an imaginary first reference axis (y-axis) and a direction vector of an imaginary second reference axis (g-axis).
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: November 5, 2019
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Gerhard Eckert, Alfred Rieder, Hao Zhu
  • Publication number: 20190242738
    Abstract: A Coriolis mass flow measuring device and/or density measuring device, comprising: at least two measuring tubes which extend mirror symmetrically to a first mirror plane; at least one exciter mechanism and at least one sensor arrangement for exciting and registering measuring tube oscillations; two terminally located collectors for joining the measuring tubes; a support body for connecting the collectors; and a number of plate-shaped couplers for pairwise connecting of the measuring tubes for forming an oscillator. The measuring tube centerlines of the measuring tubes have two oppositely bent sections and an intermediately lying straight section. The second bent section is arranged on the side of the straight section away from the second mirror plane.
    Type: Application
    Filed: May 24, 2016
    Publication date: August 8, 2019
    Inventors: Hao ZHU, Alfred RIEDER, Gerhard ECKERT, Ennio BITTO
  • Patent number: 10371553
    Abstract: transducer apparatus comprises a transducer housing, a tube, a temperature sensor as well as a temperature sensor. The tube is arranged within a cavity of the transducer housing, in such a manner that an intermediate space is formed between a wall of the transducer housing facing the cavity inner surface and an outer surface of a wall of the tube facing the cavity. Furthermore, the tube is adapted to guide a fluid in its lumen, in such a manner that an inner surface of the wall of the tube facing the lumen is contacted by fluid guided in the lumen.
    Type: Grant
    Filed: February 23, 2015
    Date of Patent: August 6, 2019
    Assignee: ENDRESS + HAUSER FLOWTEC AG
    Inventors: Alfred Rieder, Hao Zhu, Ennio Bitto, Gerhard Eckert, Josef Hubensteiner, Michael Wiesmann, Yaoing Lin
  • Publication number: 20190162702
    Abstract: A measuring transducer includes a support body, a curved oscillatable measuring tube, an electrodynamic exciter, at least one sensor for registering oscillations of the measuring tube, and an operating circuit. The measuring tube has first and second bending oscillation modes, which are mirror symmetric to a measuring tube transverse plane and have first and second media density dependent eigenfrequencies f1, f3 with f3>f1. The measuring tube has a peak secant with an oscillation node in the second mirror symmetric bending oscillation mode. The operating circuit is adapted to drive the exciter conductor loop with a signal exciting the second mirror symmetric bending oscillation mode. The exciter conductor loop has an ohmic resistance R? and a mode dependent mutual induction reactance Rg3 which depends on the position of the exciter.
    Type: Application
    Filed: April 27, 2017
    Publication date: May 30, 2019
    Inventors: Alfred Rieder, Gerhard Eckert, Ennio Bitto, Hao Zhu
  • Publication number: 20180231411
    Abstract: The invention relates to a method for ascertaining a physical parameter of a gas using a measuring transducer having a measuring tube for conveying the gas, wherein the measuring tube is excitable to execute bending oscillations of different modes and eigenfrequencies, the method includes: ascertaining the eigenfrequency of the f1-mode and f3-mode; ascertaining preliminary density values for the gas based on the eigenfrequencies of the f1-mode and f3-mode; ascertaining a value for the velocity of sound of the gas, and/or, dependent on the velocity of sound and the eigenfrequency of a mode, at least one correcting term and/or density error for the preliminary density value; and/or a correcting term for a preliminary mass flow value for determining a corrected mass flow measured value based on the first preliminary density value, the second preliminary density value, the eigenfrequencies of the f1-mode and f3-mode.
    Type: Application
    Filed: July 26, 2016
    Publication date: August 16, 2018
    Inventors: Hao Zhu, Alfred Rieder, Gerhard Eckert
  • Patent number: 9989391
    Abstract: The coil (1) comprises a platform (11) having a passageway (11A; 11A) extending from an end (11+) of the platform formed by a first end face to an end (11#) of the platform distal to the end (11+) and formed by a second end face, and a coil support (12) having a passageway (12A) extending from an end (12+) of the coil support formed by a first end face to an end (12#) of the coil support distal to the first end and formed by a second end face. The coil support (12) is so arranged relative to the platform (11) that the second end face of the coil support faces the platform and an intermediate space (20) is formed between the second end face of the coil support and the first end face of the platform, and that the passageway (12A) of the coil support aligns with the passageway (11A) of the platform.
    Type: Grant
    Filed: November 17, 2014
    Date of Patent: June 5, 2018
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Gerhard Eckert
  • Publication number: 20170356833
    Abstract: A method is provided for measuring density of a fluid by means of at least one at least sectionally curved measuring tube. The measuring tube is adapted to be flowed through by the fluid and concurrently to be caused to vibrate over a wanted oscillatory length, namely a tube length measured from a first tube end to a second tube end, a length which is greater than a minimum separation of the second tube end from the first tube end. According to the invention, among other things, also a tilt measured value representing an inclination of the at least one measuring tube in the static resting position relative to a local acceleration of gravity is ascertained, in such a manner that such represents an angle of intersection between a direction vector of an imaginary first reference axis (y-axis) and a direction vector of an imaginary second reference axis (g-axis).
    Type: Application
    Filed: November 18, 2015
    Publication date: December 14, 2017
    Inventors: Gerhard Eckert, Alfred Rieder, Hao Zhu
  • Publication number: 20170343404
    Abstract: A measuring transducer for registering and/or monitoring at least one process variable of a flowable medium guided in a pipeline, which at least includes: a housing module, which is mechanically coupled with the pipeline via an inlet end and an outlet end, and a sensor module having at least one measuring tube held oscillatably at least partially in the housing module and caused, at least at times, to oscillate. The at least one component of the housing module and/or of the sensor module is manufactured by means of a generative method and method for manufacturing at least one component of a measuring transducer, which method includes manufacturing the at least one component by means of a primary forming process, especially by means of a layered applying and/or melting-on of a powder, especially a metal powder, based on a digital data set, which gives at least the shape and/or the material and/or the structure of the at least one component.
    Type: Application
    Filed: November 9, 2015
    Publication date: November 30, 2017
    Applicant: Endress + Hauser Flowtec AG
    Inventors: Martin Josef Anklin, Gerhard Eckert, Christian Schutze, Ennio Bitto, Christof Huber, Claude Hollinger, Alfred Rieder, Michael Kirst
  • Publication number: 20170074701
    Abstract: transducer apparatus comprises a transducer housing, a tube, a temperature sensor as well as a temperature sensor. The tube is arranged within a cavity of the transducer housing, in such a manner that an intermediate space is formed between a wall of the transducer housing facing the cavity inner surface and an outer surface of a wall of the tube facing the cavity. Furthermore, the tube is adapted to guide a fluid in its lumen, in such a manner that an inner surface of the wall of the tube facing the lumen is contacted by fluid guided in the lumen.
    Type: Application
    Filed: February 23, 2015
    Publication date: March 16, 2017
    Inventors: Alfred Rieder, Hao Zhu, Ennio Bitto, Gerhard Eckert, Josef Hubensteiner, Michael Wiesmann, Yaoing Lin
  • Publication number: 20160313162
    Abstract: The coil (1) comprises a platform (11) having a passageway (11A; 11A) extending from an end (11+) of the platform formed by a first end face to an end (11#) of the platform distal to the end (11+) and formed by a second end face, and a coil support (12) having a passageway (12A) extending from an end (12+) of the coil support formed by a first end face to an end (12#) of the coil support distal to the first end and formed by a second end face. The coil support (12) is so arranged relative to the platform (11) that the second end face of the coil support faces the platform and an intermediate space (20) is formed between the second end face of the coil support and the first end face of the platform, and that the passageway (12A) of the coil support aligns with the passageway (11A) of the platform.
    Type: Application
    Filed: November 17, 2014
    Publication date: October 27, 2016
    Inventors: Ennio Bitto, Gerhard Eckert
  • Patent number: 9097570
    Abstract: A measuring transducer serves for producing vibration signals corresponding to parameters of a flowing medium comprises a measuring transducer housing having housing ends and, extending within the measuring transducer housing between its housing ends, a tube arrangement formed by means of at least two tubes. Of the two tubes, at least one tube serves as a measuring tube conveying flowing medium and the other tube is mechanically connected with the tube by means of a first coupling element to form an inlet-side coupling zone and by means of a second coupling element to form an outlet-side coupling zone. At least the first coupling element has in a region extending between the tubes a slit having at least one closed end. Slit has a maximal slit width and a maximal slit length, which is greater than the maximal slit width. Placed partially within the slit is a connecting element, which contacts a slit edge enclosing said slit.
    Type: Grant
    Filed: April 2, 2013
    Date of Patent: August 4, 2015
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Alfred Rieder, Hao Zhu, Ennio Bitto, Gerhard Eckert
  • Patent number: 8555730
    Abstract: A measuring transducer of vibration type, especially a Coriolis mass flow meter, having a housing and a mass flow tube, wherein the mass flow tube is formed into a helix having a first loop and a second loop; wherein the mass flow tube has a securement element which affixes a peripheral point of the first loop relative to a neighboring peripheral point of the second loop; and wherein the mass flow tube has an oscillation exciter on a side lying opposite the securement element along the mass flow tube. The mass flow tube has provided between the oscillation exciter and the securement element at least one add-on part acting as a canceling mass.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: October 15, 2013
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Ennio Bitto, Wolfgang Drahm, Gerhard Eckert, Dieter Mundschin
  • Patent number: 8281667
    Abstract: In a method for determining mass flow with a Coriolis mass flow measuring device arranged on a rotary filler, a correction value ?{dot over (m)} is ascertained, which is proportional to the RPM n of the rotary filler. This correction value is subtracted from the conventionally ascertained value {dot over (m)} of the mass flow. The corrected measured value {dot over (m)}corr is thus {dot over (m)}corr={dot over (m)}??{dot over (m)}.
    Type: Grant
    Filed: August 31, 2007
    Date of Patent: October 9, 2012
    Assignee: Endress + Hauser Flowtec AG
    Inventors: Gerhard Eckert, Christian Matt, Matthias Altendorf