Patents by Inventor Gerhard Hoppen

Gerhard Hoppen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8451440
    Abstract: An apparatus (1) for the optical inspection of wafers is disclosed, which comprises an assembly unit (10) which carries optical elements (30, 31, 32, 33) of at least one illumination path (3) for a bright field illumination and optical elements (50, 51, 52, 60, 61, 62, 70, 71, 72, 80, 81, 82) of at least one illumination path (5, 6, 7, 8) for a dark field illumination. The assembly unit (10) furthermore carries plural optical elements (91, 92, 93, 94, 95, 96, 97, 98, 99, 100) of at least one detection path (91, 92). An imaging optical element (32) of the at least one illumination path (3) for the bright field illumination (30), imaging optical elements (51, 61, 71, 81) of the at least one illumination path for the dark field illumination, and imaging optical elements (91, 95, 96) of the at least one detection path (9) are designed in such a way that all illumination paths (3, 5, 6, 7, 8) and all detection paths (91, 92) are telecentric.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: May 28, 2013
    Assignee: Kla-Tencor Mie GmbH
    Inventors: Kurt Hahn, Roland Hedrich, Gerhard Hoppen, Lambert Danner, Albert Kreh, Wolfgang Vollrath, Alexander Büttner, Christof Krampe-Zadler, Henning Backhauss, Hermann Bittner
  • Publication number: 20100295938
    Abstract: An apparatus (1) for the optical inspection of wafers is disclosed, which comprises an assembly unit (10) which carries optical elements (30, 31, 32, 33) of at least one illumination path (3) for a bright field illumination and optical elements (50, 51, 52, 60, 61, 62, 70, 71, 72, 80, 81, 82) of at least one illumination path (5, 6, 7, 8) for a dark field illumination. The assembly unit (10) furthermore carries plural optical elements (91, 92, 93, 94, 95, 96, 97, 98, 99, 100) of at least one detection path (91, 92). An imaging optical element (32) of the at least one illumination path (3) for the bright field illumination (30), imaging optical elements (51, 61, 71, 81) of the at least one illumination path for the dark field illumination, and imaging optical elements (91, 95, 96) of the at least one detection path (9) are designed in such a way that all illumination paths (3, 5, 6, 7, 8) and all detection paths (91, 92) are telecentric.
    Type: Application
    Filed: March 3, 2010
    Publication date: November 25, 2010
    Applicant: KLA-TENCOR MIE GMBH
    Inventors: Kurt Hahn, Roland Hedrich, Gerhard Hoppen, Lambert Danner, Albert Kreh, Wolfgang Vollrath, Alexander Büttner, Christof Krampe-Zadler, Henning Backhauss, Hermann Bittner
  • Patent number: 7209243
    Abstract: A coordinate measuring instrument includes a horizontally X-Y displaceable measurement stage for receiving a substrate with a feature that is to be measured, an illumination system, and a detector device. The illumination system includes a light source, an optical fiber bundle, a coupling-in optical system before the optical fiber bundle, a coupling-out optical system after the optical fiber bundle, an illuminating optical system for illuminating an image field, and a homogenizing optical system which is arranged between said coupling-out optical system and said illuminating optical system. The homogenizing optical system homogenizes the non-uniform intensity distribution in the image field of the light emerging from the optical fiber bundle. The light of said light source is picked off via said coupling-in optical system with a large numerical entrance aperture, and is coupled into said optical fiber bundle.
    Type: Grant
    Filed: February 12, 2004
    Date of Patent: April 24, 2007
    Assignee: Leica Microsystems Semiconductor GmbH
    Inventors: Franz Cemic, Lambert Danner, Gerhard Hoppen
  • Patent number: 7050223
    Abstract: A DUV-capable dry objective for microscopes comprises lens groups made of quartz glass, fluorite, and in some cases also lithium fluoride. It possesses a DUV focus for a DUV wavelength region ?DUV±??, where ??=8 nm, and additionally a parfocal IR focus for an IR wavelength ?IR, where 760 nm??IR?920 nm. For that purpose, the penultimate element is of concave configuration on both sides, and its object-side outer radius is much smaller than its image-side outer radius. The DUV objective is IR autofocus-capable.
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: May 23, 2006
    Assignee: Leica Microsystems Semiconductor GmbH
    Inventor: Gerhard Hoppen
  • Patent number: 7019910
    Abstract: An inspection microscope (1) having a light source (3) that emits light of a first wavelength below 400 nm for illumination of a specimen (13) to be inspected, and having an objective (11) that is composed of multiple optical components and has a numerical aperture and a focal length, and having a tube optical system (21) and an autofocus device (25) that directs light of a second wavelength onto the specimen (13), is disclosed. The inspection microscope (1) is characterized by the objective (11), which has an optical correction that eliminates the longitudinal chromatic aberrations with respect to the first and the second wavelength and whose optical components are assembled in cement-free fashion, the second wavelength being greater than 400 nm.
    Type: Grant
    Filed: April 4, 2002
    Date of Patent: March 28, 2006
    Assignee: Leica Microsystems Semiconductor GmbH
    Inventor: Gerhard Hoppen
  • Patent number: 6975409
    Abstract: An illumination device according to the present invention comprises a light source (1), an optical fiber bundle (4), a coupling-in optical system (3) before and a coupling-out optical system (5) after the fiber bundle (4), and an illuminating optical system (17; 20). A homogenizing optical system (6) between the coupling-out optical system (5) and illuminating optical system (17; 20) brings about a homogenization of the intensity distribution in the image field. The homogenizing optical system (6) advantageously comprises a micro-honeycomb condenser (7) and a lens member (8) which superimpose the exit opening of the fiber bundle (4) in an intermediate image plane (10) to form a homogeneous intermediate image.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: December 13, 2005
    Assignee: Leica Microsystems Semiconductor GmbH
    Inventors: Franz Cemic, Lambert Danner, Gerhard Hoppen
  • Publication number: 20040160777
    Abstract: An illumination device according to the present invention comprises a light source (1), an optical fiber bundle (4), a coupling-in optical system (3) before and a coupling-out optical system (5) after the fiber bundle (4), and an illuminating optical system (17; 20). A homogenizing optical system (6) between the coupling-out optical system (5) and illuminating optical system (17; 20) brings about a homogenization of the intensity distribution in the image field. The homogenizing optical system (6) advantageously comprises a micro-honeycomb condenser (7) and a lens member (8) which superimpose the exit opening of the fiber bundle (4) in an intermediate image plane (10) to form a homogeneous intermediate image.
    Type: Application
    Filed: February 12, 2004
    Publication date: August 19, 2004
    Applicant: Leica-Microsystems Wetzlar GmbH
    Inventors: Franz Cemic, Lambert Danner, Gerhard Hoppen
  • Publication number: 20020186463
    Abstract: An inspection microscope (1) having a light source (3) that emits light of a first wavelength below 400 nm for illumination of a specimen (13) to be inspected, and having an objective (11) that is composed of multiple optical components and has a numerical aperture and a focal length, and having a tube optical system (21) and an autofocus device (25) that directs light of a second wavelength onto the specimen (13), is disclosed. The inspection microscope (1) is characterized by the objective (11), which has an optical correction that eliminates the longitudinal chromatic aberrations with respect to the first and the second wavelength and whose optical components are assembled in cement-free fashion, the second wavelength being greater than 400 nm.
    Type: Application
    Filed: April 4, 2002
    Publication date: December 12, 2002
    Applicant: LEICA MICROSYSTEMS SEMICONDUCTOR GmbH
    Inventor: Gerhard Hoppen
  • Publication number: 20020001090
    Abstract: An illumination device according to the present invention comprises a light source (1), an optical fiber bundle (4), a coupling-in optical system (3) before and a coupling-out optical system (5) after the fiber bundle (4), and an illuminating optical system (17; 20). A homogenizing optical system (6) between the coupling-out optical system (5) and illuminating optical system (17; 20) brings about a homogenization of the intensity distribution in the image field. The homogenizing optical system (6) advantageously comprises a micro-honeycomb condenser (7) and a lens member (8) which superimpose the exit opening of the fiber bundle (4) in an intermediate image plane (10) to form a homogeneous intermediate image.
    Type: Application
    Filed: June 29, 2001
    Publication date: January 3, 2002
    Applicant: Leica Microsystems Wetzlar GmbH.
    Inventors: Franz Cemic, Lambert Danner, Gerhard Hoppen