Patents by Inventor Gerhard Lautenschläger

Gerhard Lautenschläger has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230002270
    Abstract: A formed or non-flat formed glass is provided that exhibits high transmittance to electromagnetic radiation in a range of wavelengths from 200 nm to 1500 nm. The transmittance for the formed or non-flat formed glass having a thickness of 1 mm is 20% or more at a wavelength of 254 nm, 82% or more at a wavelength of 300 nm, 90% or more at a wavelength of 350 nm, 92% or more at a wavelength of 546 nm, 92.5% or more at a wavelength of 1400 nm, 91.5% or more in a wavelength range from 380 nm to 780 nm, and 92.5% or more in a wavelength range from 780 nm to 1500 nm.
    Type: Application
    Filed: September 5, 2022
    Publication date: January 5, 2023
    Applicant: SCHOTT AG
    Inventors: Gerhard Lautenschläger, Andreas Krieg, Andreas Voitsch, Axel Engel, Christian Pitzel, Matthias Schmidt, Thomas Kloss
  • Publication number: 20220411316
    Abstract: The invention relates to glass articles, in particular flat glasses, in the case of which the surface material has gradient material properties as a result of targeted process control which in turn lead to compressive prestressing of the surface. The invention also relates to a method for producing the glass articles and the use thereof.
    Type: Application
    Filed: June 17, 2022
    Publication date: December 29, 2022
    Applicant: Schott AG
    Inventors: Ulrich Fotheringham, Gerhard Lautenschläger, Rainer Erwin Eichholz, Jochen Alkemper
  • Patent number: 11465929
    Abstract: A flat glass is provided that exhibits high transmittance to electromagnetic radiation in a range of wavelengths from 200 nm to 1500 nm. The transmittance for the flat glass having a thickness of 1 mm is 20% or more at a wavelength of 254 nm, 82% or more at a wavelength of 300 nm, 90% or more at a wavelength of 350 nm, 92% or more at a wavelength of 546 nm, 92.5% or more at a wavelength of 1400 nm, 91.5% or more in a wavelength range from 380 nm to 780 nm, and 92.5% or more in a wavelength range from 780 nm to 1500 nm.
    Type: Grant
    Filed: May 17, 2019
    Date of Patent: October 11, 2022
    Assignee: SCHOTT AG
    Inventors: Gerhard Lautenschläger, Andreas Krieg, Andreas Voitsch, Axel Engel, Christian Pitzel, Matthias Schmidt, Thomas Kloss
  • Publication number: 20190352217
    Abstract: A flat glass is provided that exhibits high transmittance to electromagnetic radiation in a range of wavelengths from 200 nm to 1500 nm. The transmittance for the flat glass having a thickness of 1 mm is 20% or more at a wavelength of 254 nm, 82% or more at a wavelength of 300 nm, 90% or more at a wavelength of 350 nm, 92% or more at a wavelength of 546 nm, 92.5% or more at a wavelength of 1400 nm, 91.5% or more in a wavelength range from 380 nm to 780 nm, and 92.5% or more in a wavelength range from 780 nm to 1500 nm.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 21, 2019
    Applicant: SCHOTT AG
    Inventors: Gerhard Lautenschläger, Andreas Krieg, Andreas Voitsch, Axel Engel, Christian Pitzel, Matthias Schmidt, Thomas Kloss
  • Publication number: 20190352213
    Abstract: A method of producing an electronic component is provided. The method includes providing flat glass having a dielectric constant of less than 4.3 and a dielectric loss factor of 0.004 or less at 5 GHz; configuring the flat glass as one of an interposer, a substrate, or a superstrate; and forming the interposer, the substrate, or the superstrate into the electronic component. The electronic component can be an antenna, a patch antenna, an array of antennas, a phase shifter element, and a liquid crystal-based phase shifter element.
    Type: Application
    Filed: May 17, 2019
    Publication date: November 21, 2019
    Applicant: SCHOTT AG
    Inventors: Martin Letz, Gerhard Lautenschläger, Martun Hovhannisyan, Matthias Jotz, Lutz Klippe, Thomas Kloss
  • Patent number: 10442723
    Abstract: An alkali borosilicate glass is provided that includes: SiO2 70-86 wt % Al2O3 0-5 wt % B2O3 9.0-25 wt % Na2O 0.5-5.0 wt % K2O 0-1.0 wt %, and Li2O 0-1.0 wt %. The proportions of the components are chosen in such a way that the weighted crosslinking index, that is, the mean number n of constraints per atom has a value greater than 2.9.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: October 15, 2019
    Assignee: SCHOTT AG
    Inventors: Gerhard Lautenschlaeger, Jochen Alkemper, Ulf Dahlmann, Ulrich Fotheringham
  • Patent number: 9952378
    Abstract: A light guide plate for guiding of visible light for the backlighting of a liquid crystal display is provided. The light guide plate has two parallel lateral faces and at least one edge face, which serves preferably as a light input face. The light guide plate is a glass that contains B2O3 and SiO2 as components, wherein the total content of B2O3 and SiO2 is at least 70 weight percent and the B2O3 content is greater than 10%. The total content of metal oxide of divalent metals in the composition of the glass is less than 3 weight percent. Al2O3 is contained between 1 weight percent and 5 weight percent in the composition.
    Type: Grant
    Filed: August 17, 2016
    Date of Patent: April 24, 2018
    Assignee: SCHOTT AG
    Inventors: Gerhard Lautenschläger, Thomas Kloss, Jochen Alkemper, Matthias Schmidt, Andreas Voitsch
  • Patent number: 9789666
    Abstract: The present disclosure relates to bullet-resistant laminated glass having at least three sheets of glass. One of the sheets of glass faces the impact side as a cover sheet, and one sheet of glass is formed as a closure sheet facing away from the impact side. Between the cover sheet and the closure sheet, one or more intermediate sheets are disposed, these sheets of glass being connected to each other by composite layers. The composite layers are formed by flexible and dimensionally unstable films and/or cast compounds. The composite layers do not consist of polycarbonate, polyurethane or polymethylmethacrylate. In order to prevent splinter output on the rear side, this glass composite has a closure sheet on the rear side consisting of thermally or chemically prestressed glass.
    Type: Grant
    Filed: June 12, 2013
    Date of Patent: October 17, 2017
    Assignee: SCHOTT AG
    Inventors: Gerrit Panzner, Ruediger Freitag, Georg Neupert, Gerhard Lautenschlaeger
  • Publication number: 20170080130
    Abstract: A material that is less populated by biofilms than known materials and is well tolerated by the body is provided. The material is an element introducible into or attachable on a human or animal body and includes a glass and/or glass ceramic and/or ceramic material at least in some areas thereof, which inhibits the formation of biofilms and/or on which human or animal cells grow if the element is introduced into the human or animal body or attached thereto, wherein the glass and/or glass ceramic material comprises at least: SiO2 in a range from 60 to 75 wt % and ZnO in a range from 1 to 7 wt %.
    Type: Application
    Filed: September 22, 2016
    Publication date: March 23, 2017
    Applicant: SCHOTT AG
    Inventors: Sabine Pichler-Wilhelm, Oliwia Makarewicz, Gerhard Lautenschlaeger, Mareike Klinger-Strobel, Andreas Stallmach, Mathias W. R. Pletz
  • Publication number: 20170052311
    Abstract: A light guide plate for guiding of visible light for the backlighting of a liquid crystal display is provided. The light guide plate has two parallel lateral faces and at least one edge face, which serves preferably as a light input face. The light guide plate is a glass that contains B2O3 and SiO2 as components, wherein the total content of B2O3 and SiO2 is at least 70 weight percent and the B2O3 content is greater than 10%. The total content of metal oxide of divalent metals in the composition of the glass is less than 3 weight percent. Al2O3 is contained between 1 weight percent and 5 weight percent in the composition.
    Type: Application
    Filed: August 17, 2016
    Publication date: February 23, 2017
    Applicant: SCHOTT AG
    Inventors: Gerhard Lautenschläger, Thomas Kloss, Jochen Alkemper, Matthias Schmidt, Andreas Voitsch
  • Publication number: 20160176751
    Abstract: An alkali borosilicate glass is provided that includes: SiO2 70-86 wt % Al2O3 0-5 wt % B2O3 9.0-25 wt % Na2O 0.5-5.0 wt % K2O 0-1.0 wt %, and Li2O 0-1.0 wt %. The proportions of the components are chosen in such a way that the weighted crosslinking index, that is, the mean number n of constraints per atom has a value greater than 2.9.
    Type: Application
    Filed: December 23, 2015
    Publication date: June 23, 2016
    Applicant: SCHOTT AG
    Inventors: Gerhard LAUTENSCHLAEGER, Jochen ALKEMPER, Ulf DAHLMANN, Ulrich Fotheringham
  • Patent number: 9199876
    Abstract: A thin lithium-aluminosilicate glass is provided. The glass is suitable for three dimensional precision molding and suitable for toughening, wherein after toughening, the glass has a center tension smaller than 50 Mpa, a surface compressive stress of 600-1200 Mpa, and a bending strength of up to 500 MPa. The glass also has a transition point lower than 550° C.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: December 1, 2015
    Assignee: SCHOTT GLASS TECHNOLOGIES (SUZHOU) CO., LTD.
    Inventors: Chong Wang, José Zimmer, Feng He, Gerhard Lautenschlaeger, Armin Vogl
  • Publication number: 20150165730
    Abstract: The present disclosure relates to bullet-resistant laminated glass having at least three sheets of glass. One of the sheets of glass faces the impact side as a cover sheet, and one sheet of glass is formed as a closure sheet facing away from the impact side. Between the cover sheet and the closure sheet, one or more intermediate sheets are disposed, these sheets of glass being connected to each other by composite layers. The composite layers are formed by flexible and dimensionally unstable films and/or cast compounds. The composite layers do not consist of polycarbonate, polyurethane or polymethylmethacrylate. In order to prevent splinter output on the rear side, this glass composite has a closure sheet on the rear side consisting of thermally or chemically prestressed glass.
    Type: Application
    Filed: June 12, 2013
    Publication date: June 18, 2015
    Applicant: SCHOTT AG
    Inventors: Gerrit Panzner, Ruediger Freitag, Georg Neupert, Gerhard Lautenschlaeger
  • Patent number: 8728961
    Abstract: A method is described for making a float glass convertible into a glass ceramic, by which a largely crystal fault-free glass can be produced. In this method the glass is cooled from a temperature (TKGmax), at which a crystal growth rate is at a maximum value (KGmax), to another temperature (TUEG), at which practically no more crystal growth occurs, with a cooling rate, KR, in ° C. min?1 according to: KR UEG KGmax ? ? ? ? T UEG KGmax 100 · KG ? ? max , wherein ?T=TKGmax?TUEG, and KGmax=maximum crystal growth rate in ?m min?1. The float glass has a thickness below an equilibrium thickness, a net width of at least 1 m and has no more than 50 crystals with a size of more than 50 ?m, especially no crystals with a size of more than 10 ?m, per kilogram of glass within the net width.
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: May 20, 2014
    Assignee: Schott AG
    Inventors: Gerhard Lautenschlaeger, Andreas Langsdorf, Ulrich Lange, Bernd Ruedinger, Klaus Schneider, Michael Jacquorie, Friedrich Siebers, Wolfgang Schmidbauer
  • Patent number: 8607591
    Abstract: The device for manufacturing glass, in which bubble formation on precious metal components is prevented, has a precious or refractory metal wall (12, 43) at least partially surrounding a glass melt from which the glass is made, a first electrode pair (20, 21) for measuring oxygen partial pressure at an interface between the glass melt and the wall to obtain an actual value, a second electrode pair (12, 43, 20) for measuring an oxygen partial pressure in the glass melt to obtain a set point value and a regulating system (39, 45) for adjusting the oxygen partial pressure at the interface according to a comparison between the actual value and the set point value, so that the oxygen partial pressure at the interface is within a safe range.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: December 17, 2013
    Assignee: Schott AG
    Inventors: Gerhard Lautenschlaeger, Thomas Pfeiffer, Andreas Roters, Gernot Roeth
  • Publication number: 20130209751
    Abstract: An alkali aluminosilicate glass for 3D precision molding and thermal bending is provided. The glass has a working point lower than 1200° C. (104 dPas) and a transition temperature Tg lower than 610° C. The glass has, based on a sum of all the components in percentage by weight, 51-63% of Si02; 5-18% of Al203; 8-16% of Na20; 0-6% of K20; 3.5-10% of MgO; 0-5% of B203; 0-4.5% of Li20; 0-5% of ZnO; 0-8% of CaO; 0.1-2.5% of Zr02; 0.01-<0.2% of Ce02; 0-0.5% of F2; 0.01-0.5% of Sn02; 0-3% of BaO; 0-3% of SrO; 0-0.5% of Yb203; wherein the sum of Si02+Al203 is 63-81%, and the sum of CaO+MgO is 3.5-18%, and the ratio of Na20/(Li20+Na20+K20) is 0.4-1.5.
    Type: Application
    Filed: May 18, 2011
    Publication date: August 15, 2013
    Applicant: SCHOTT GLASS TECHNOLOGIES (SUZHOU) CO. LTD.
    Inventors: Guangjun Zhang, José Zimmer, He Feng, Gerhard Lautenschlaeger, Armin Vogl
  • Publication number: 20130189486
    Abstract: A thin lithium-aluminosilicate glass is provided. The glass is suitable for three dimensional precision molding and suitable for toughening, wherein after toughening, the glass has a center tension smaller than 50 Mpa, a surface compressive stress of 600-1200 Mpa, and a bending strength of up to 500 MPa. The glass also has a transition point lower than 550° C.
    Type: Application
    Filed: February 22, 2011
    Publication date: July 25, 2013
    Applicant: SCHOTT GLASS TECHNOLOGIES (SUZHOU) CO., LTD.
    Inventors: Chong Wang, José Zimmer, Feng He, Gerhard Lautenschlaeger, Armin Vogl
  • Publication number: 20120108414
    Abstract: A method of ceramicizing a floated glass is provided where the glass ceramic material obtained thereby has high stability because of the special quality of the atmosphere in the ceramicizing process. The glass ceramics thus obtained have special surface properties that avoid crack formation. Thereby very high bending tensile strengths are achieved. These glass ceramics can be used as fire protection glass, hot plate of a cooker having a coating on the lower side, safety glass, panes of wood-burning fireplace inserts, in colored form as hot plate of a cooker, base plate, thermally resistant panel lining in furnaces and microwave facilities.
    Type: Application
    Filed: November 3, 2011
    Publication date: May 3, 2012
    Applicant: SCHOTT AG
    Inventors: Bernd Ruedinger, Friedrich Siebers, Gerhard Lautenschlaeger, Matthias Baesel
  • Publication number: 20110281099
    Abstract: A method is described for making a float glass convertible into a glass ceramic, by which a largely crystal fault-free glass can be produced. In this method the glass is cooled from a temperature (TKGmax), at which a crystal growth rate is at a maximum value (KGmax), to another temperature (TUEG), at which practically no more crystal growth occurs, with a cooling rate, KR, in ° C. min?1 according to: KR UEG KGmax ? ? ? ? T UEG KGmax 100 · KGmax , wherein ?T=TKGmax?TUEG, and KGmax=maximum crystal growth rate in ?m min?1. The float glass has a thickness below an equilibrium thickness, a net width of at least 1 m and has no more than 50 crystals with a size of more than 50 ?m, especially no crystals with a size of more than 10 ?m, per kilogram of glass within the net width.
    Type: Application
    Filed: July 27, 2011
    Publication date: November 17, 2011
    Inventors: Gerhard Lautenschlaeger, Andreas Langsdorf, Ulrich Lange, Bernd Ruedinger, Klaus Schneider, Michael Jacquorie, Friedrich Siebers, Wolfgang Schmidbauer
  • Patent number: 8015842
    Abstract: A method for making a float glass convertible into a glass ceramic, by which a largely crystal fault-free glass can be produced. In this method the glass is cooled from a temperature (TKGmax), at which a crystal growth rate is at a maximum value (KGmax), to another temperature (TUEG), at which practically no more crystal growth occurs, with a cooling rate, KR, in ° C. min?1 according to: KR UEG KG max ? ? ? ? T UEG KG max 100 · KG max , wherein ?T=TKGmax?TUEG, and KGmax=maximum crystal growth rate in ?m min?1. The float glass has a thickness below an equilibrium thickness, a net width of at least 1 m and has no more than 50 crystals with a size of more than 50 ?m, especially no crystals with a size of more than 10 ?m, per kilogram of glass within the net width.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: September 13, 2011
    Assignee: Schott AG
    Inventors: Gerhard Lautenschlaeger, Andreas Langsdorf, Ulrich Lange, Bernd Ruedinger, Klaus Schneider, Michael Jacquorie, Friedrich Siebers, Wolfgang Schmidbauer