Patents by Inventor Gerhard Niederfellner

Gerhard Niederfellner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11732052
    Abstract: Provided is a bispecific (monoclonal) antibody molecule with a first binding domain binding an antigen on CD8+ T-cells that does not naturally occur in and/or on CD8+ T-cells and a second binding domain binding to a tumor specific antigen naturally occurring on the surface of a tumor cell. The bispecific (monoclonal) antibody molecules are particularly useful in combination with transduced CD8+ T-cells comprising an antigen which does not naturally occur in and/or on CD8+ T-cells and/or a T-cell receptor. The (bispecific) antibody molecules can be used in a method for the treatment of particular diseases, wherein the (bispecific) antibody molecules are administered in combination with transduced CD8+ T-cells comprising an antigen which does not naturally occur in and/or on CD8+ T-cells and/or a T-cell receptor in a specific treatment regimen.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: August 22, 2023
    Inventors: Carole Bourquin, Raffaella Castoldi, Stefan Endres, Christian Klein, Sebastian Kobold, Gerhard Niederfellner, Claudio Sustmann
  • Patent number: 11618790
    Abstract: Herein is reported a polypeptide-polynucleotide-complex as therapeutic agent and its use as tool for the targeted delivery of an effector moiety. The polynucleotide part of the complex is essentially resistant to proteolytic and enzymatic degradation in vivo. Additionally the polypeptide part specifically binds to a compound or structure such as a tissue or organ, a process or a disease. Thus, one aspect as reported herein is a polypeptide-polynucleotide-complex comprising a) a polypeptide specifically binding to a target and conjugated to a first member of a binding pair, b) a polynucleotide linker conjugated at its first terminus to the second member of the binding pair, and c) an effector moiety conjugated to a polynucleotide that is complementary to at least a part of the polynucleotide linker.
    Type: Grant
    Filed: December 5, 2019
    Date of Patent: April 4, 2023
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Michael Gerg, Dieter Heindl, Gerhard Niederfellner, Wolfgang Schaefer, Michael Schraeml, Michael Tacke
  • Patent number: 11547748
    Abstract: The present invention generally relates to T-cells, such as CD8+ T-cells, CD4+ T-cells, CD3+ T-cells, ?? T-cells or natural killer (NK) T-cells, transfected/transduced with a fusion protein which is recruited by the use of trivalent, bispecific antibody molecule which specifically binds to/interacts with the extracellular domain of the fusion protein. More precisely, the present invention relates to a kit comprising the nucleic acid molecules, vectors and/or the fusion proteins of the present invention and the trivalent, bispecific antibody molecules of the present invention. Further aspects of the inventions are expression vectors comprising nucleic acid molecules encoding the fusion proteins as well as the trivalent, bispecific antibody molecules. Further, a process for the production of the trivalent, bispecific antibody molecules of the invention and a medicament/pharmaceutical composition comprising said trivalent, bispecific antibody molecules are described.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: January 10, 2023
    Inventors: Christian Klein, Claudio Sustmann, Gerhard Niederfellner, Martina Geiger, Stefan Endres, Sebastian Kobold
  • Publication number: 20200317806
    Abstract: The present invention relates to a bispecific (monoclonal) antibody molecule with a first binding domain binding an \JD antigen on CD8+ T-cells that does not naturally occur in and/or on CD8+ T-cells and a second binding domain binding to a tumor M specific antigen naturally occurring on the surface of a minor cell. The bispecific (monoclonal) antibody molecules are particularly useful in combination with transduced CD8+ T-cells comprising an antigen which does not naturally occur in and/or on CD8+ T-cells and/or a T-cell receptor.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 8, 2020
    Inventors: Carole Bourquin, Raffaella Castoldi, Stefan Endres, Christian Klein, Sebastian Kobold, Gerhard Niederfellner, Claudio Sustmann
  • Publication number: 20200207874
    Abstract: Herein is reported a polypeptide-polynucleotide-complex as therapeutic agent and its use as tool for the targeted delivery of an effector moiety. The polynucleotide part of the complex is essentially resistant to proteolytic and enzymatic degradation in vivo. Additionally the polypeptide part specifically binds to a compound or structure such as a tissue or organ, a process or a disease. Thus, one aspect as reported herein is a polypeptide-polynucleotide-complex comprising a) a polypeptide specifically binding to a target and conjugated to a first member of a binding pair, b) a polynucleotide linker conjugated at its first terminus to the second member of the binding pair, and c) an effector moiety conjugated to a polynucleotide that is complementary to at least a part of the polynucleotide linker.
    Type: Application
    Filed: December 5, 2019
    Publication date: July 2, 2020
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Michael GERG, Dieter HEINDL, Gerhard NIEDERFELLNER, Wolfgang SCHAEFER, Michael SCHRAEML, Michael TACKE
  • Publication number: 20200181280
    Abstract: The invention provides a Pseudomonas exotoxin A (PE) comprising an amino acid sequence having a substitution of one or more B-cell and/or T-cell epitopes. The invention further provides related chimeric molecules, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions. Methods of treating or preventing cancer in a mammal, methods of inhibiting the growth of a target cell, methods of producing the PE, and methods of producing the chimeric molecule are further provided by the invention.
    Type: Application
    Filed: June 3, 2019
    Publication date: June 11, 2020
    Inventors: Ira H. Pastan, Ronit Mazor, Masanori Onda, Byungkook Lee, Gerhard Niederfellner, Sabine Imhof-Jung, Ulrich Brinkmann, Werner Scheuer, Guy Georges
  • Patent number: 10633451
    Abstract: The present invention relates to a bispecific (monoclonal) antibody molecule with a first binding domain binding an antigen on CD8+ T-cells that does not naturally occur in and/or on CD8+ T-cells and a second binding domain binding to a tumor specific antigen naturally occurring on the surface of a tumor cell. The bispecific (monoclonal) antibody molecules are particularly useful in combination with transduced CD8+ T-cells comprising an antigen which does not naturally occur in and/or on CD8+ T-cells and/or a T-cell receptor.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: April 28, 2020
    Assignees: Hoffmann-La Roche Inc., Ludwig-Maximillians-Universität München
    Inventors: Carole Bourquin, Raffaella Castoldi, Stefan Endres, Christian Klein, Sebastian Kobold, Gerhard Niederfellner, Claudio Sustmann
  • Patent number: 10626177
    Abstract: The invention relates to anti-HER3 antigen binding proteins, e.g. anti-HER3 antibodies, that bind to the beta-hairpin of HER3, methods for selecting these antigen binding proteins, their preparation and use as medicament.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: April 21, 2020
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Birgit Bossenmaier, David Casagolda Vallribera, Guy Georges, Michael Gerg, Gerhard Niederfellner, Christian Scholz, Michael Schraeml
  • Patent number: 10364290
    Abstract: The invention relates to anti-HER3/HER4 antigen binding proteins, e.g. anti-HER3/HER4 antibodies, that bind to the beta-hairpin of HER3 and the beta-hairpin of HER4, methods for selecting these antigen binding proteins, their preparation and use as medicament.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: July 30, 2019
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Birgit Bossenmaier, Guy Georges, Michael Gerg, Gerhard Niederfellner, Christian Scholz, Michael Schraeml
  • Publication number: 20190216908
    Abstract: The present invention generally relates to T-cells, such as CD8+ T-cells, CD4+ T-cells, CD3+ T-cells, ?? T-cells or natural killer (NK) T-cells, transfected/transduced with a fusion protein which is recruited by the use of trivalent, bispecific antibody molecule which specifically binds to/interacts with the extracellular domain of the fusion protein. More precisely, the present invention relates to a kit comprising the nucleic acid molecules, vectors and/or the fusion proteins of the present invention and the trivalent, bispecific antibody molecules of the present invention. Further aspects of the inventions are expression vectors comprising nucleic acid molecules encoding the fusion proteins as well as the trivalent, bispecific antibody molecules. Further, a process for the production of the trivalent, bispecific antibody molecules of the invention and a medicament/pharmaceutical composition comprising said trivalent, bispecific antibody molecules are described.
    Type: Application
    Filed: June 30, 2017
    Publication date: July 18, 2019
    Inventors: Christian Klein, Claudio Sustmann, Gerhard Niederfellner, Martina Geiger, Stefan Endres, Sebastian Kobold
  • Publication number: 20180118837
    Abstract: The invention relates to anti-HER3/HER4 antigen binding proteins, e.g. anti-HER3/HER4 antibodies, that bind to the beta-hairpin of HER3 and the beta-hairpin of HER4, methods for selecting these antigen binding proteins, their preparation and use as medicament.
    Type: Application
    Filed: August 3, 2017
    Publication date: May 3, 2018
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Birgit Bossenmaier, Guy Georges, Michael Gerg, Gerhard Niederfellner, Christian Scholz, Michael Schraeml
  • Publication number: 20180100022
    Abstract: The invention relates to anti-HER1 antigen binding proteins, e.g. anti-HER1 antibodies, that bind to the beta-hairpin of HER1, methods for selecting these antigen binding proteins, their preparation and use as medicament.
    Type: Application
    Filed: November 21, 2017
    Publication date: April 12, 2018
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Birgit Bossenmaier, Michael Gerg, Gerhard Niederfellner, Carmen Peess, Michael Schraeml
  • Publication number: 20180094062
    Abstract: The invention relates to anti-HER3 antigen binding proteins, e.g. anti-HER3 antibodies, that bind to the beta-hairpin of HER3, methods for selecting these antigen binding proteins, their preparation and use as medicament.
    Type: Application
    Filed: August 3, 2017
    Publication date: April 5, 2018
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Birgit Bossenmaier, David Casagolda Vallribera, Guy Georges, Michael Gerg, Gerhard Niederfellner, Christian Scholz, Michael Schraeml
  • Patent number: 9840565
    Abstract: The invention relates to anti-HER1 antigen binding proteins, e.g. anti-HER1 antibodies, that bind to the beta-hairpin of HER1, methods for selecting these antigen binding proteins, their preparation and use as medicament.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: December 12, 2017
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Birgit Bossenmaier, Michael Gerg, Gerhard Niederfellner, Carmen Peess, Michael Schraeml
  • Patent number: 9783611
    Abstract: The invention relates to specific anti-HER3 antibodies, that bind to the beta-hairpin of HER3, their preparation and use as medicament.
    Type: Grant
    Filed: May 12, 2015
    Date of Patent: October 10, 2017
    Assignee: Hoffman-La Roche Inc.
    Inventors: Birgit Bossenmaier, Richard Buick, Michael Gerg, Frank Kroner, Gerhard Niederfellner, Carmen Peess, Michael Schraeml
  • Patent number: 9725512
    Abstract: The invention relates to anti-HER3 antigen binding proteins, e.g. anti-HER3 antibodies, that bind to the beta-hairpin of HER3, methods for selecting these antigen binding proteins, their preparation and use as medicament.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: August 8, 2017
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Birgit Bossenmaier, David Casagolda Vallribera, Guy Georges, Michael Gerg, Gerhard Niederfellner, Christian Scholz, Michael Schraeml
  • Patent number: 9725511
    Abstract: The invention relates to anti-HER3/HER4 antigen binding proteins, e.g. anti-HER3/HER4 antibodies, that bind to the beta-hairpin of HER3 and the beta-hairpin of HER4, methods for selecting these antigen binding proteins, their preparation and use as medicament.
    Type: Grant
    Filed: November 6, 2013
    Date of Patent: August 8, 2017
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Birgit Bossenmaier, Guy Georges, Michael Gerg, Gerhard Niederfellner, Christian Scholz, Michael Schraeml
  • Publication number: 20170096485
    Abstract: The present invention generally relates to novel bispecific antigen binding molecules for T cell activation and re-direction to specific target cells. In addition, the present invention relates to polynucleotides encoding such bispecific antigen binding molecules, and vectors and host cells comprising such polynucleotides. The invention further relates to methods for producing the bispecific antigen binding molecules of the invention, and to methods of using these bispecific antigen binding molecules in the treatment of disease.
    Type: Application
    Filed: September 29, 2016
    Publication date: April 6, 2017
    Applicant: Hoffmann-La Roche Inc.
    Inventors: Marina BACAC, Tanja FAUTI, Anne FREIMOSER-GRUNDSCHOBER, Sabine IMHOF-JUNG, Christian KLEIN, Stefan KLOSTERMANN, Michael MOLHOJ, Gerhard NIEDERFELLNER, Joerg Thomas REGULA, Wolfgang SCHAEFER, Pablo UMAÑA
  • Publication number: 20170051072
    Abstract: The invention provides a Pseudomonas exotoxin A (PE) comprising an amino acid sequence having a substitution of one or more B-cell and/or T-cell epitopes. The invention further provides related chimeric molecules, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions. Methods of treating or preventing cancer in a mammal, methods of inhibiting the growth of a target cell, methods of producing the PE, and methods of producing the chimeric molecule are further provided by the invention.
    Type: Application
    Filed: June 23, 2016
    Publication date: February 23, 2017
    Inventors: Ira H. Pastan, Ronit Mazor, Masanori Onda, Byungkook Lee, Gerhard Niederfellner, Sabine Imhof-Jung, Ulrich Brinkmann, Werner Scheuer, Guy Georges
  • Patent number: 9388222
    Abstract: The invention provides a Pseudomonas exotoxin A (PE) comprising an amino acid sequence having a substitution of one or more B-cell and/or T-cell epitopes. The invention further provides related chimeric molecules, as well as related nucleic acids, recombinant expression vectors, host cells, populations of cells, and pharmaceutical compositions. Methods of treating or preventing cancer in a mammal, methods of inhibiting the growth of a target cell, methods of producing the PE, and methods of producing the chimeric molecule are further provided by the invention.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: July 12, 2016
    Assignees: The United States of America, as represented by the Secretary, Department of Health and Human Services, Hoffman-La Roche Inc.
    Inventors: Ira H. Pastan, Ronit Mazor, Masanori Onda, Byungkook Lee, Gerhard Niederfellner, Sabine Imhof-Jung, Ulrich Brinkmann, Guy Georges