Patents by Inventor Gerhard-Wilhelm Ziegler

Gerhard-Wilhelm Ziegler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10191382
    Abstract: An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: January 29, 2019
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Erich Schubert, Alexander Kohl, Gerhard-Wilhelm Ziegler, Michael Patra, Markus Deguenther, Michael Layh
  • Publication number: 20180335702
    Abstract: An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
    Type: Application
    Filed: April 26, 2018
    Publication date: November 22, 2018
    Inventors: Erich Schubert, Alexander Kohl, Gerhard-Wilhelm Ziegler, Michael Patra, Markus Deguenther, Michael Layh
  • Publication number: 20180314165
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Application
    Filed: March 21, 2018
    Publication date: November 1, 2018
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Patent number: 10088754
    Abstract: A raster arrangement includes at least one raster element of a first type and at least one raster element of a second type. Each raster element of the first type has a first bundle-influencing effect. Each raster element of the second type has a second bundle-influencing effect which is different from the first bundle-influencing effect. Each raster element of the first type is located in a first area of the raster arrangement. Each raster element of the second type is located in a second area of the raster arrangement which is different from the first area of the raster arrangement.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: October 2, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 9977333
    Abstract: An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: May 22, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Erich Schubert, Alexander Kohl, Gerhard-Wilhelm Ziegler, Michael Patra, Markus Deguenther, Michael Layh
  • Patent number: 9933706
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 3, 2018
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Publication number: 20170351183
    Abstract: An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
    Type: Application
    Filed: March 17, 2017
    Publication date: December 7, 2017
    Inventors: Erich Schubert, Alexander Kohl, Gerhard-Wilhelm Ziegler, Michael Patra, Markus Deguenther, Michael Layh
  • Publication number: 20170261861
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Application
    Filed: September 20, 2016
    Publication date: September 14, 2017
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Publication number: 20170192361
    Abstract: A raster arrangement includes at least one raster element of a first type and at least one raster element of a second type. Each raster element of the first type has a first bundle-influencing effect. Each raster element of the second type has a second bundle-influencing effect which is different from the first bundle-influencing effect. Each raster element of the first type is located in a first area of the raster arrangement. Each raster element of the second type is located in a second area of the raster arrangement which is different from the first area of the raster arrangement.
    Type: Application
    Filed: March 21, 2017
    Publication date: July 6, 2017
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 9645388
    Abstract: There is provided a facet mirror device comprising a facet element and a support unit, the support unit supporting the facet element. The support unit comprises a first support element and a second support element, the second support element being connected to the facet element to support the facet element. The first support element is connected to the second support element to support the second support element, the first support element being connected to the second support element via at least one flexure unit, the flexure unit comprising at least one flexure.
    Type: Grant
    Filed: October 7, 2013
    Date of Patent: May 9, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Gerhard-Wilhelm Ziegler, Thomas Bischoff
  • Patent number: 9606441
    Abstract: A microlithography illumination system includes a first raster arrangement including a first plurality of bundle-forming raster elements arranged in or adjacent a first plane of the illumination system. The first plurality of bundle-forming raster elements is configured to generate a raster arrangement of secondary light sources. The illumination system also includes a transmission optics configured to superimpose transmission of the illumination light of the secondary light sources into the object field. The transmission optics includes a second raster arrangement comprising a second plurality of bundle-forming raster elements. The illumination system further includes a displacement device configured to displace a displaceable segment of the first raster arrangement relative to the second raster arrangement. The displaceable segment includes exactly one of the raster elements, a group of several raster elements, a raster column, a raster area, or several groups of raster elements.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: March 28, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 9599904
    Abstract: An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: March 21, 2017
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Erich Schubert, Alexander Kohl, Gerhard-Wilhelm Ziegler, Michael Patra, Markus Deguenther, Michael Layh
  • Patent number: 9454085
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: September 27, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Publication number: 20160187789
    Abstract: An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventors: Erich Schubert, Alexander Kohl, Gerhard-Wilhelm Ziegler, Michael Patra, Markus Deguenther, Michael Layh
  • Publication number: 20160161858
    Abstract: An illumination system for microlithography serves to illuminate an illumination field with illumination light of a primary light source. A first raster arrangement has bundle-forming first raster elements which are arranged in a first plane of the illumination system or adjacent to the plane. The first raster arrangement serves to generate a raster arrangement of secondary light sources. A transmission optics serves for superimposed transmission of the illumination light of the secondary light sources into the illumination field. The transmission optics has a second raster arrangement with bundle-forming second raster elements. In each case one of the raster elements of the first raster arrangement is allocated to one of the raster elements of the second raster arrangement for guiding a partial bundle of an entire bundle of illumination light. The first raster arrangement for example has at least two types (I, II, III) of the first raster elements which have different bundle-influencing effects.
    Type: Application
    Filed: February 1, 2016
    Publication date: June 9, 2016
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Patent number: 9310694
    Abstract: An illumination system of a micro-lithographic projection exposure apparatus is provided, which is configured to illuminate a mask positioned in a mask plane. The system includes a pupil shaping optical subsystem and illuminator optics that illuminate a beam deflecting component. For determining a property of the beam deflecting component, an intensity distribution in a system pupil surface of the illumination system is determined. Then the property of the beam deflecting component is determined such that the intensity distribution produced by the pupil shaping subsystem in the system pupil surface approximates the intensity distribution determined before. At least one of the following aberrations are taken into account in this determination: (i) an aberration produced by the illuminator optics; (ii) an aberration produced by the pupil shaping optical subsystem; (iii) an aberration produced by an optical element arranged between the system pupil surface and the mask plane.
    Type: Grant
    Filed: May 23, 2013
    Date of Patent: April 12, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Erich Schubert, Alexander Kohl, Gerhard-Wilhelm Ziegler, Michael Patra, Markus Deguenther, Michael Layh
  • Patent number: 9280060
    Abstract: A raster arrangement includes first and second types of raster elements which have different bundle-influencing effects. There is a distance step between a first raster area and a second raster area. The first raster area comprises a raster element of the first raster element type. The second raster area includes a raster element of the second raster element type. The raster arrangement is configured to be used in a microlithography illumination system.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: March 8, 2016
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther
  • Publication number: 20150286150
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Application
    Filed: June 18, 2015
    Publication date: October 8, 2015
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Patent number: 9091945
    Abstract: An illumination system of a microlithographic projection exposure apparatus includes a spatial light modulator which varies an intensity distribution in a pupil surface. The modulator includes an array of mirrors that reflect impinging projection light into directions that depend on control signals applied to the mirrors. A prism, which directs the projection light towards the spatial light modulator, has a double pass surface on which the projection light impinges twice, namely a first time when leaving the prism and before it is reflected by the mirrors, and a second time when entering the prism and after it has been reflected by the mirrors. A pupil perturbation suppressing mechanism is provided that reduces reflections of projection light when it impinges the first time on the double pass surface, and/or prevents that light portions being a result of such reflections contribute to the intensity distribution in the pupil surface.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: July 28, 2015
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Markus Deguenther, Damian Fiolka, Gerhard-Wilhelm Ziegler
  • Publication number: 20150022798
    Abstract: A raster arrangement includes first and second types of raster elements which have different bundle-influencing effects. There is a distance step between a first raster area and a second raster area. The first raster area comprises a raster element of the first raster element type. The second raster area includes a raster element of the second raster element type. The raster arrangement is configured to be used in a microlithography illumination system.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 22, 2015
    Inventors: Axel Scholz, Frank Schlesener, Nils Haverkamp, Vladimir Davydenko, Michael Gerhard, Gerhard-Wilhelm Ziegler, Mirco Kern, Thomas Bischoff, Thomas Stammler, Stephan Kellner, Manfred Maul, Daniel Walldorf, Igor Hurevich, Markus Deguenther