Patents by Inventor Gerhardus Wilhelmus Lucassen

Gerhardus Wilhelmus Lucassen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10699559
    Abstract: The present invention relates to an optical transceiver, comprising an optical converter circuit (24) comprising an optoelectronic device (26), an electronic appliance (30) generating data, and circuitry (28) configured to control the optoelectronic device (26) and the electronic appliance (30). The optoelectronic device (26) is configured to, upon receiving an incoming optical beam, convert the optical beam into electrical energy. The optoelectronic device (26) is further configured to emit optical pulses, wherein emission of the optical pulses is induced by the incoming optical beam through photo-induced electro-luminescence (PIEL), wherein the optical pulses based on photo-induced electro-luminescence comprise the data generated by the electronic appliance (30).
    Type: Grant
    Filed: September 4, 2017
    Date of Patent: June 30, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Martinus Bernardus Van Der Mark, Klaas Cornelis Jan Wijbrans, Gerhardus Wilhelmus Lucassen
  • Patent number: 10659164
    Abstract: The present invention relates to an optical link, comprising an optical converter circuit (16) having an optoelectronic device (18) and circuitry (20) connected to the optoelectronic device (18). The optoelectronic device (18) has a plurality of individual optoelectronic segments (18a-18i). The optical link further comprises an elongated optical guide (14) having a single optical fiber optically connected at a first end to the optoelectronic device (18) and configured to transmit light away from the optoelectronic device (18), wherein the individual optoelectronic segments (18a-18i) have different positions relative to the first end of the optical fiber so that light beams emitted by the optoelectronic segments (18a-18i) are coupled into the optical fiber under different angles.
    Type: Grant
    Filed: June 17, 2017
    Date of Patent: May 19, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Klaas Cornelis Jan Wijbrans, Gerhardus Wilhelmus Lucassen, Martinus Bernardus Van Der Mark
  • Publication number: 20200046325
    Abstract: The invention relates to an interventional instrument like a catheter comprising an ultrasound unit (41) and a rotation unit (5) for rotating the ultrasound unit, wherein the rotation unit comprises an actuation element (8) being an electroactive polymer or a one-way shape memory alloy for actuating the rotation of the ultrasound unit. Since the rotation unit comprises, as an actuation element for actuating the rotation of the ultrasound unit, an electroactive polymer or a one-way shape memory alloy, the rotation unit with the actuation element can be very compact and small.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 13, 2020
    Inventors: Franciscus Johannes Gerardus HAKKENS, Cornelis Petrus HENDRIKS, Franciscus Reinier Antonius VAN DER LINDE, Gerhardus Wilhelmus LUCASSEN, Ronald Antonie HOVENKAMP, Arjen VAN DER HORST, Gerardus Henricus Maria GIJSBERS, Eduard Gerard Marie PELSSERS, Godefridus Antonius HARKS
  • Patent number: 10531921
    Abstract: The present invention relates to a method for determining a state of tissue sealing during a tissue sealing process. According to the disclosed method, an optical probe beam is used to irradiate a tissue region. A signal indicative of optical scattering in the tissue region is generated from a portion of the optical probe beam that has passed through or been returned by the tissue region. The onset of tissue sealing is indicated by the successive occurrence in time of a turning point and a point of inflection in the optical scattering signal. An energy-based tissue sealing or tissue-cutting device for use in accordance with the method is also disclosed.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: January 14, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Torre Michelle Bydlon, Vishnu Vardhan Pully, Charles Frederik Sio, Sandra Martina Van Den Bosch, Gerhardus Wilhelmus Lucassen
  • Patent number: 10518106
    Abstract: The present invention discloses a device and a method for controlling growth of hair on human skin with low doses of electromagnetic radiation, and a device for carrying out the method. In the method, radiation of a suitable spectrum is applied to the skin, in one or more pulses of between 1 and 100 ms, and with maximum fluencies on the skin between 1 and 12 J/cm2. By applying such low fluencies and at controlled pulse durations, follicles of the hairs are induced to the catagen phase. This means that the growth of the hairs of those follicles will stop. Although the method is not primarily aimed at immediate hair removal, hairs may be shed subsequently. In any case, further growth may be stopped for prolonged periods of time. The main advantage of the method is that the risk of damage to the skin is minimized.
    Type: Grant
    Filed: April 30, 2009
    Date of Patent: December 31, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Michiel Errit Roersma, Antonius Maarten Nuijs, Francesco Roosen, Paul Anton Josef Ackermans, Rieko Verhagen, Gerhardus Wilhelmus Lucassen, Johannes Johanna Van Herk
  • Publication number: 20190365248
    Abstract: The present invention relates to a device for determining information relating to a suspected occluding structure. It is described to provide (210) a spectral resolving unit with at least one broadband radiation. The at least one broadband radiation comprises a first broadband radiation acquired from a region of interest within a vascular structure. An occluding structure is suspected to be located within the region of interest and wherein the first broadband radiation is associated with the suspected occluding structure. At least one spectrally resolved data set is determined (220) on the basis of the at least one broadband radiation, wherein the at least one spectrally resolved data set comprises a first spectrally resolved data set determined on the basis of the first broadband radiation. A processing unit is provided (230) with the at least one spectrally resolved data set on the basis of the at least one broadband radiation.
    Type: Application
    Filed: January 15, 2018
    Publication date: December 5, 2019
    Inventors: MANFRED MUELLER, ARJEN VAN DER HORST, GERHARDUS WILHELMUS LUCASSEN, BERNARDUS HENDRIKUS WILHELMUS HENDRIKS, CHARLES FREDERIK SIO
  • Patent number: 10463349
    Abstract: A biopsy device for taking a 3D biopsy may comprise an outer sleeve, a hollow main shaft, a biopsy tube and a tube shaft. The hollow main shaft may have a distal end portion with a sideward facing notch, and the main shaft may be adapted to be accommodated within the outer sleeve. The biopsy tube may be provided for receiving cut and thus isolated tissue. A proximal end of the biopsy tube may be releasably attachable to a distal end of the tube shaft so that the biopsy tube is movable together with the tube shaft within the hollow main shaft between a proximal position in which the biopsy tube is not located in the notch, and a distal position in which the biopsy tube is located in the notch.
    Type: Grant
    Filed: November 9, 2015
    Date of Patent: November 5, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Pieter Jan Van Der Zaag, Cornelius Antonius Nicolaas Maria Van Der Vleuten, Bernardus Hendrikus Wilhelmus Hendriks, Gerhardus Wilhelmus Lucassen, Klaas Cornelis Jan Wijbrans
  • Publication number: 20190312643
    Abstract: The present invention relates to an optical link, comprising an optical converter circuit (16) having an optoelectronic device (18) and circuitry (20) connected to the optoelectronic device (18). The optoelectronic device (18) has a plurality of individual optoelectronic segments (18a-18i). The optical link further comprises an elongated optical guide (14) having a single optical fiber optically connected at a first end to the optoelectronic device (18) and configured to transmit light away from the optoelectronic device (18), wherein the individual optoelectronic segments (18a-18i) have different positions relative to the first end of the optical fiber so that light beams emitted by the optoelectronic segments (18a-18i) are coupled into the optical fiber under different angles.
    Type: Application
    Filed: June 17, 2017
    Publication date: October 10, 2019
    Applicant: KONINKLIJKE PHILIPS N.V.
    Inventors: Klaas Cornelis Jan WIJBRANS, Gerhardus Wilhelmus LUCASSEN, Martinus Bernardus VAN DER MARK
  • Patent number: 10379290
    Abstract: The present invention relates to an optical fiber connector arrangement that finds application in the general field of optical interconnection. The optical fiber connector arrangement (935) comprises a first optical fiber connector (922) including a first optical fiber (905) and a counterpart optical fiber connector (923) including a counterpart optical fiber (925); wherein the first optical fiber connector (922) is configured to mate with the counterpart optical fiber connector (923). The first optical fiber (905) of the first optical fiber connector (922) has a core diameter D1 and a Numerical Aperture NA1; and the counterpart optical fiber (925) of the counterpart optical fiber connector (923) has a counterpart core diameter D2 and a counterpart Numerical Aperture NA2. At least one of the ratio (D1/D2) or the ratio (NA1/NA2) either exceeds 1.15 or is less than 0.85.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: August 13, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Klass Cornelis Jan Wijbrans, Gerhardus Wilhelmus Lucassen, Bernardus Hendrikus Wilhelmus Hendriks, Christian Reich, Peter Douglas Fairley, Waltherus Cornelis Jozef Bierhoff, Johannes Antonius Van Rooij
  • Publication number: 20190213871
    Abstract: The present invention relates to an optical transceiver, comprising an optical converter circuit (24) comprising an optoelectronic device (26), an electronic appliance (30) generating data, and circuitry (28) configured to control the optoelectronic device (26) and the electronic appliance (30). The optoelectronic device (26) is configured to, upon receiving an incoming optical beam, convert the optical beam into electrical energy. The optoelectronic device (26) is further configured to emit optical pulses, wherein emission of the optical pulses is induced by the incoming optical beam through photo-induced electro-luminescence (PIEL), wherein the optical pulses based on photo-induced electro-luminescence comprise the data generated by the electronic appliance (30).
    Type: Application
    Filed: September 4, 2017
    Publication date: July 11, 2019
    Inventors: Martinus Bernardus VAN DER MARK, Klaas Cornelis Jan WIJBRANS, Gerhardus Wilhelmus LUCASSEN
  • Patent number: 10342416
    Abstract: The present invention relates to a medical probe which consists of a cannula with a multilumen stylet inside. The multilumen contains at least two lumen. Both the multilumen as well as the cannula may have beveled ends. In the lumen straight optical fibers (i.e. no angle end face) are present that can be connected at the proximal end to a console. The cannula, multilumen, fiber system forming the medical probe comprises at least in one of the lumen of the multilumen more than one optical fiber. Preferably the source and detector fibers for the fluorescence detection are contained in one single lumen of the multilumen.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: July 9, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Waltherus Cornelis Jozef Bierhoff, Axel Winkel, Bernardus Hendrikus Wilhelmus Hendriks, Stephan Voss, Gerhardus Wilhelmus Lucassen
  • Publication number: 20190183566
    Abstract: An interventional ablation device (1) is proposed to comprise an ablation needle (3) with an elongated body (5) and a handle (7). Adjacent to an ablation element (9) provided on the body (5), at least one or preferably two or more sensors (11-21) are provided, preferably at both of opposing sides of the ablation element (9). The ablation device (1) is adapted for detecting physiological information of tissue (27, 29, 31) surrounding an ablation site (33) based on measurement values provided by the sensors. E.g., optical sensors may be used to measure a reflectance spectrum indicating whether the adjacent tissue is healthy tissue (31), tumorous tissue (27) or ablated tissue (29). Using such information, an ablation process may be controlled.
    Type: Application
    Filed: February 22, 2019
    Publication date: June 20, 2019
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Gerhardus Wilhelmus Lucassen, Rami Nachabe, Waltherus Cornelis Jozef Bierhoff, Adrien Emmanuel Desjardins
  • Patent number: 10299684
    Abstract: A system and method to support exploring the interior of an object. The system 100, 200 includes a graphical user interface generator (GG) to generate a graphical user interface (GUI). The graphical user interface (GUI) includes an indicator (NC) of a current position of an interventional tool (IT) inside an object (OB). There is also an exploratory indictor (PC) to indicate material composition and/or type that surrounds the tool's tip (TP) at a current position in the object (OB). The exploratory indicator (PC) includes a pointer element for a current reading against a dial element for a range of possible values.
    Type: Grant
    Filed: December 17, 2014
    Date of Patent: May 28, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Torre Michelle Bydlon, Arnoldus Theodorus Martinus Hendricus Van Keersop, Gerhardus Wilhelmus Lucassen, Vijay Parthasarathy, Vishnu Vardhan Pully, Marjolein Van Der Voort, Manfred Mueller, Gerardus Henricus Maria Gijsbers
  • Patent number: 10204415
    Abstract: The invention relates to an imaging apparatus (1). First and second image providing units (2, 9) provide a first image showing a region of an object, which includes a resection part to be resected, and a second image showing the region of the object, after the resection procedure has been performed, or showing a resected part, which has been resected. A smallest margin determination unit (13) determines a smallest margin region being a region where a margin between the resection part and the resected part is smallest based on the first and second images. The smallest margin region is the region which most likely contains a part of the object, which should have been resected, like a cancerous part. An optionally following investigation of the resected part or of the remaining object can be more focused by considering this region, thereby allowing for faster corresponding assessing procedures.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: February 12, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Theodoor Jacques Marie Ruers, Susanne Dorien Van Den Berg-Dams, Nicolaas Jan Noordhoek, Robert Johannes Frederik Homan, Rami Nachabe, Gerhardus Wilhelmus Lucassen, Waltherus Cornelis Jozef Bierhoff, Marjolein Van Der Voort
  • Publication number: 20180344404
    Abstract: There is provided a hair cutting device for cutting hair on a body of a subject, the hair cutting device comprising a light source for generating laser light at one or more specific wavelengths corresponding to wavelengths absorbed by one or more chromophores in hair; and a cutting element that comprises an optical waveguide that is coupled to the light source to receive laser light, wherein a portion of a side wall of the optical waveguide forms a cutting face for contacting hair, and wherein at least at the cutting face the optical waveguide has a refractive index that is equal to or lower than the refractive index of hair and higher than the refractive index of skin.
    Type: Application
    Filed: December 19, 2016
    Publication date: December 6, 2018
    Inventors: YANNYK PARULIAN JULIAN BOURQUIN, RIEKO VERHAGEN, BASTIAAN WILHELMUS MARIA MOESKOPS, KIRAN KUMAR THUMMA, JOSEPH PETRUS HENRICUS TER BORCH, MARK THOMAS JOHNSON, ARNOLDUS JOHANNES MARTINUS JOZEPH RAS, GERHARDUS WILHELMUS LUCASSEN, MARTINUS BERNARDUS VAN DER MARK
  • Patent number: 10143450
    Abstract: A biopsy device includes a tubular member, a hollow shaft and an elongated fiber body having at least one optical fiber. The hollow shaft has a laterally (sidewardly) facing notch in its distal portion. The tubular member is movable relative to the shaft, between a first position in which the notch is covered by the tubular member, and a second position in which the notch is not covered by the tubular member. The shaft is movable between a first position in which the distal end of the optical fiber is located at the distal end of the shaft with the elongated fiber body extending through the notch, and a second position in which the distal end of the at least one optical fiber is located proximally to the notch.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: December 4, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Waltherus Cornelis Jozef Bierhoff, Christian Reich, Martinus Bernardus Van Der Mark, Bernardus Hendrikus Wilhelmus Hendriks, Anja Van De Stolpe, Stephan Voss, Axel Winkel, Marjolen Van Der Voort, Vishnu Vardhan Pully, Gerhardus Wilhelmus Lucassen, Susanne Dorien Van Den Berg-Dams, Jarich Willem Spliethoff
  • Publication number: 20180303468
    Abstract: A biopsy device is provided comprising a tubular member, a hollow shaft and an elongated fiber body. The hollow shaft may have a distal end and a shaft, wherein a laterally (sidewardly) facing notch is formed in the distal portion of the shaft. The elongated fiber body may include at least one optical fiber, preferably at least two optical fibers, with a distal end. The tubular member is movable relative to the shaft, between a first position in which the notch is covered by the tubular member, and a second position in which the notch is not covered by the tubular member. The fiber body is movable within the shaft, between a first position in which the distal end of the optical fiber is located at the distal end of the shaft with the elongated fiber body extending through the notch, and a second position in which the distal end of the at least one optical fiber is located proximally to the notch.
    Type: Application
    Filed: June 26, 2018
    Publication date: October 25, 2018
    Inventors: Waltherus Cornelis Jozef Bierhoff, Christian Reich, Martinus Bernardus Van Der Mark, Bernardus Hendrikus Wilhelmus Hendriks, Anja Van De Stolpe, Stephan Voss, Axel Winkel, Marjolen Van Der Voort, Vishnu Vardhan Pully, Gerhardus Wilhelmus Lucassen, Susanne Dorien Van Den Berg-Dams, Jarich Willem Spliethoff
  • Patent number: 10105057
    Abstract: The present invention relates to an apparatus 100 and, a method and a computer program for determining a parameter indicative of a tissue type of an associated tissue 116. In particular, the invention relates to an apparatus 100 comprising a spectrometer 102, which spectrometer comprises a light source 104 and a detector 106, 108 arranged to measure an optical spectrum. This enables determination of a first parameter being indicative of a bile concentration. As the inventors of the present invention have made the insight that bile concentration may serve as a discriminative feature for different tissue types, the apparatus is arranged to determine a second parameter indicative of a tissue type based on a concentration of bile. According to a specific embodiment, the apparatus further comprises an interventional device 112.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: October 23, 2018
    Assignee: Koninklijke Philips N.V.
    Inventors: Bernardus Hendrikus Wilhelmus Hendriks, Rami Nachabe, Gerhardus Wilhelmus Lucassen, Adrien Emmanuel Desjardins, Theodoor Jacques Marie Ruers
  • Patent number: 10094768
    Abstract: The present invention relates to an optical fiber connector for mating a first group of one or more optical fibers (102) with one or more corresponding optical fibers in a second group of one or more optical fibers (103). The optical fiber connector includes a shutter (105), which prevents the ingress of debris into the connector, and provides an optical reference surface with which to calibrate optical fibers that are inserted into the connector. The optical fiber connector finds application in the general optical fiber field, and more particularly finds application in the medical field in which it may be used to connect optical fibers in a photonic needle application.
    Type: Grant
    Filed: April 7, 2015
    Date of Patent: October 9, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Klaas Cornelis Jan Wijbrans, Gerhardus Wilhelmus Lucassen, Bernardus Hendrikus Wilhelmus Hendriks, Christian Reich, Johannes Antonius Van Rooij, Jaap Knoester
  • Patent number: 10031297
    Abstract: The present invention relates to an optical fiber connector that finds application in the general field of optical inter-connection. The optical fiber connector (1a, 1b, c) includes a body (2) having a bore (3) configured to receive an optical fiber; an alignment sleeve (4) that is arranged coaxially with the bore (3); an optical fiber (5) having an end face (6); wherein the optical fiber (5) is arranged within the bore (3). At least at the end face (6) the optical fiber connector includes an optical signature component (50, 51, 52) having a predetermined optical signature.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: July 24, 2018
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Klass Cornelis Jan Wijbrans, Gerhardus Wilhelmus Lucassen, Bernardus Hendrikus Wilhelmus Hendriks, Christian Reich, Peter Douglas Fairley, Waltherus Cornelis Jozef Bierhoff, Johannes Antonius Van Rooij