Patents by Inventor German E. Rylov

German E. Rylov has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8126027
    Abstract: An apparatus is disclosed which may comprise a grating receiving light, a first prism moveable to coarsely select an angle of incidence of the light on the grating, and a second prism moveable to finely select an angle of incidence of the light on the grating. In one application, the apparatus may be used as a line narrowing module for a laser light source.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: February 28, 2012
    Assignee: Cymer, Inc.
    Inventors: J. Martin Algots, Robert A. Bergstedt, William N. Partlo, German E. Rylov, Richard L. Sandstrom
  • Publication number: 20110194580
    Abstract: An apparatus is disclosed which may comprise a grating receiving light, a first prism moveable to coarsely select an angle of incidence of the light on the grating, and a second prism moveable to finely select an angle of incidence of the light on the grating. In one application, the apparatus may be used as a line narrowing module for a laser light source.
    Type: Application
    Filed: April 14, 2011
    Publication date: August 11, 2011
    Applicant: CYMER, INC.
    Inventors: J. Martin Algots, Robert A. Bergstedt, William N. Partlo, German E. Rylov, Richard L. Sandstrom
  • Publication number: 20100097704
    Abstract: An apparatus is disclosed which may comprise a grating receiving light, a first prism moveable to coarsely select an angle of incidence of the light on the grating, and a second prism moveable to finely select an angle of incidence of the light on the grating. In one application, the apparatus may be used as a line narrowing module for a laser light source.
    Type: Application
    Filed: December 14, 2009
    Publication date: April 22, 2010
    Applicant: Cymer, Inc.
    Inventors: J. Martin Algots, Robert A. Bergstedt, Walter D. Gillespie, Vladimir A. Kulgeyko, William N. Partlo, German E. Rylov, Richard L. Sandstrom, Brian Strate, Timothy S. Dyer
  • Patent number: 7653095
    Abstract: In a first aspect, a lithography apparatus may comprise a mask designed using optical proximity correction (OPC), a pulsed laser source, and an active bandwidth control system configured to increase the bandwidth of a subsequent pulse in response to a measured pulse bandwidth that is below a predetermined bandwidth range and increase a bandwidth of a subsequent pulse in response to a measured pulse bandwidth that is above the predetermined bandwidth range. In another aspect an active bandwidth control system may include an optic for altering a wavefront of a laser beam in a laser cavity of the laser source to selectively adjust an output laser bandwidth in response to the control signal. In yet another aspect, the bandwidth of a laser having a wavelength variation across an aperture may be actively controlled by an aperture blocking element that is moveable to adjust a size of the aperture.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: January 26, 2010
    Assignee: Cymer, Inc.
    Inventors: Daniel J. Reiley, German E. Rylov, Robert A. Bergstedt
  • Publication number: 20080151944
    Abstract: A line narrowing method and module for a narrow band DUV high power high repetition rate gas discharge laser producing output laser light pulse beam pulses in bursts of pulses, the module having a nominal optical path are disclosed which may comprise: a dispersive center wavelength selection optic moveably mounted within an optical path of the line narrowing module, selecting at least one center wavelength for each pulse determined at least in part by the angle of incidence of the laser light pulse beam containing the respective pulse on the dispersive wavelength selection optic; a first tuning mechanism operative in part to select the angle of incidence of the laser light pulse beam containing the respective pulse upon the dispersive center wavelength selection optic, by selecting an angle of transmission of the laser light pulse beam containing the pulse toward the dispersive center wavelength selection optic.
    Type: Application
    Filed: February 28, 2008
    Publication date: June 26, 2008
    Applicant: Cymer, Inc.
    Inventors: J. Martin Algots, Robert A. Bergstedt, Walter D. Gillespie, Vladimir A. Kulgeyko, William N. Partlo, German E. Rylov, Richard L. Sandstrom, Brian Strate, Timothy S. Dyer
  • Patent number: 7366219
    Abstract: A line narrowing method and module for a narrow band DUV high power high repetition rate gas discharge laser producing output laser light pulse beam pulses in bursts of pulses, the module having a nominal optical path are disclosed which may comprise: a dispersive center wavelength selection optic moveably mounted within an optical path of the line narrowing module, selecting at least one center wavelength for each pulse determined at least in part by the angle of incidence of the laser light pulse beam containing the respective pulse on the dispersive wavelength selection optic; a first tuning mechanism operative in part to select the angle of incidence of the laser light pulse beam containing the respective pulse upon the dispersive center wavelength selection optic, by selecting an angle of transmission of the laser light pulse beam containing the pulse toward the dispersive center wavelength selection optic; a second tuning mechanism operative in part to select the angle of incidence of the laser light pu
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: April 29, 2008
    Assignee: Cymer, Inc.
    Inventors: J. Martin Algots, Robert A. Bergstedt, Walter D. Gillespie, Vladimir A. Kulgeyko, William N. Partlo, German E. Rylov, Richard L. Sandstrom, Brian Strate, Timothy S. Dyer
  • Patent number: 7218661
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in a F2 laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: May 15, 2007
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Richard L. Sandstrom, German E. Rylov, Eckehard D. Onkels, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Igor V. Fomenkov, Richard C. Ujazdowski, Richard M. Ness, Scot T. Smith, William G. Hulburd
  • Patent number: 7088758
    Abstract: An apparatus and method are disclosed for operating a narrow band short pulse duration gas discharge laser output light pulse beam producing system, producing a beam comprising laser output light pulses at a selected pulse repetition rate, which may comprise: a dispersive center wavelength selection optic selecting at least one center wavelength for each pulse determined at least in part by the angle of incidence of the laser light pulse beam containing the respective pulse on the dispersive wavelength selection optic; a tuning mechanism operative to select at least one angle of incidence of a first spatially defined portion of the laser light pulse beam containing the respective pulse upon the dispersive center wavelength selection optic; and, the tuning mechanism comprising a variably refractive optical element defining a plurality of refractive angular displacements of the first spatially defined portion of the laser light pulse beam passing through the variably refractive optical element at one of a plura
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: August 8, 2006
    Assignee: Cymer, Inc.
    Inventors: Richard L. Sandstrom, William N. Partlo, Daniel J. W. Brown, Thomas A. Yager, Alexander I. Ershov, Robert J. Rafac, German E. Rylov
  • Patent number: 7058107
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in a F2 laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: June 6, 2006
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Richard L. Sandstrom, German E. Rylov, Eckehard D. Onkels, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Igor V. Fomenkov, Richard C. Ujazdowski, Richard M. Ness, Scott T. Smith, William G. Hulburd
  • Publication number: 20040258122
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in a F2 laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: May 25, 2004
    Publication date: December 23, 2004
    Inventors: David S. Knowles, Daniel J. W. Brown, Richard L. Sandstrom, German E. Rylov, Eckehard D. Onkels, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Igor V. Fomenkov, Richard C. Ujazdowski, Richard M. Ness, Scot T. Smith, William G. Hulburd
  • Patent number: 6801560
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in a F2 laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: October 5, 2004
    Assignee: Cymer, Inc.
    Inventors: David S. Knowles, Daniel J. W. Brown, Richard L. Sandstrom, German E. Rylov, Eckehard D. Onkels, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Igor V. Fomenkov, Richard C. Ujazdowski, Richard M. Ness, Scott T. Smith, William G. Hulburd
  • Patent number: 6798812
    Abstract: The present invention provides an injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 to 10 mJ or greater for integrated outputs of about 20 to 40 Watts or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The parameters chamber can be controlled separately permitting optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment is a F2 laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In this preferred embodiment, both of the chambers and the laser optics are mounted on a vertical optical table within a laser enclosure.
    Type: Grant
    Filed: September 13, 2002
    Date of Patent: September 28, 2004
    Assignee: Cymer, Inc.
    Inventors: German E. Rylov, Thomas Hofmann, Richard L. Sandstrom
  • Publication number: 20040174919
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in a F2 laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: March 18, 2004
    Publication date: September 9, 2004
    Inventors: David S. Knowles, Daniel J. W. Brown, Richard L. Sandstrom, German E. Rylov, Eckehard D. Onkels, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Igor V. Fomenkov, Richard C. Ujazdowski, Richard M. Ness, Scott T. Smith, William G. Hulburd
  • Publication number: 20030138019
    Abstract: The present invention provides an injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 to 10 mJ or greater for integrated outputs of about 20 to 40 Watts or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The parameters chamber can be controlled separately permitting optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment is a F2 laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In this preferred embodiment, both of the chambers and the laser optics are mounted on a vertical optical table within a laser enclosure.
    Type: Application
    Filed: September 13, 2002
    Publication date: July 24, 2003
    Inventors: German E. Rylov, Thomas Hofmann, Richard L. Sandstrom
  • Publication number: 20020154671
    Abstract: An injection seeded modular gas discharge laser system capable of producing high quality pulsed laser beams at pulse rates of about 4,000 Hz or greater and at pulse energies of about 5 mJ or greater. Two separate discharge chambers are provided, one of which is a part of a master oscillator producing a very narrow band seed beam which is amplified in the second discharge chamber. The chambers can be controlled separately permitting separate optimization of wavelength parameters in the master oscillator and optimization of pulse energy parameters in the amplifying chamber. A preferred embodiment in a F2 laser system configured as a MOPA and specifically designed for use as a light source for integrated circuit lithography. In the preferred MOPA embodiment, each chamber comprises a single tangential fan providing sufficient gas flow to permit operation at pulse rates of 4000 Hz or greater by clearing debris from the discharge region in less time than the approximately 0.25 milliseconds between pulses.
    Type: Application
    Filed: January 23, 2002
    Publication date: October 24, 2002
    Inventors: David S. Knowles, Daniel J.W. Brown, Richard L. Sandstrom, German E. Rylov, Eckehard D. Onkels, Herve A. Besaucele, David W. Myers, Alexander I. Ershov, William N. Partlo, Igor V. Fomenkov, Richard C. Ujazdowski, Richard M. Ness, Scott T. Smith, William G. Hulburd