Patents by Inventor Gerner Larsen

Gerner Larsen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11499523
    Abstract: A system (24) and method are described herein for manufacturing a wind turbine blade (22) proximate to the final installation site of a wind turbine (10). The system (24) includes a creel (72) of feeders (74) configured to apply strengthening elements (62) onto a plurality of shell core sections (26) coupled together and fed through the creel (72). The shell core sections (26) include an external surface (56) with a plurality of external grooves (58) recessed into the external surface (56) such that the strengthening elements (62) are laid into the external grooves (58). The system (24) also includes a deposition station (78) configured to apply an outer surface material layer (82) in fluid form to cover the external surface (56) and the plurality of strengthening elements (62).
    Type: Grant
    Filed: December 13, 2018
    Date of Patent: November 15, 2022
    Assignee: Vestas Wind Systems A/S
    Inventors: Gerner Larsen, Allan Hjarbæk Holm, Julio Xavier Vianna Neto, Abdalla Khamas, Miguel Fernandez Perez
  • Patent number: 11391267
    Abstract: A method of handling a wind turbine component for assembly or maintenance, comprising moving one or more unmanned air vehicles to respective positions proximal to a wind turbine component so that the wind turbine component can be supported by the one or more unmanned air vehicles; and controlling the one or more unmanned air vehicles to lift the wind turbine component and manoeuvre said component with respect to a wind turbine. The invention extends to a system for handling a component of a wind turbine, comprising a plurality of unmanned air vehicles (UAVs); a UAV ground station computer system; and one or more lifting harnesses for carrying by the plurality of unmanned air vehicles.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: July 19, 2022
    Assignee: Vestas Wind Systems A/S
    Inventors: Gunnar K. Storgaard Pedersen, Christian Skov Frederiksen, Anton Bech, Gerner Larsen, Ivar J. B. K. Jensen, Klaus Lynge Petersen
  • Patent number: 11359604
    Abstract: A system for a wind park including: a control system in communication with a plurality of unmanned air vehicles, wherein the control system is configured to deploy one or more unmanned air vehicles during a triggering condition; and wherein the deployed unmanned air vehicles are guided towards an assigned wind turbine and to interact with a blade of that wind turbine in order to control oscillation of the blade. The invention also embraces a method for reducing blade oscillations of a wind turbine, comprising: monitoring for a triggering condition associated with the wind turbine; on detecting the triggering condition, deploying unmanned air vehicles towards a wind turbine and interacting with a blade of the wind turbine using the unmanned air to control oscillation of the blade. The invention therefore provides an efficient approach to controlling blade oscillations with minimal human operator involvement.
    Type: Grant
    Filed: June 21, 2018
    Date of Patent: June 14, 2022
    Assignee: Vestas Wind Systems A/S
    Inventors: Gunnar K. Storgaard Pedersen, Ivar J. B. K. Jensen, Gerner Larsen, Christian Skov Frederiksen, Klaus Lynge Petersen
  • Patent number: 11346320
    Abstract: A wind turbine blade has a blade body and a leading edge fairing. The blade body has a root, a tip, and a longitudinal direction extending between the root and the tip. The 5 blade body also has a channel extending in the longitudinal direction. The leading edge fairing has a projection extending into the channel and extending in the longitudinal direction so as to be received in the channel. Also, a leading edge fairing for attachment to a blade body of a wind turbine blade; a method of fitting a leading edge fairing to a wind turbine blade; and a kit of parts with a number of the leading edge fairings.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: May 31, 2022
    Assignee: Vestas Wind Systems A/S
    Inventors: Gerner Larsen, Ian Stewart
  • Publication number: 20210207576
    Abstract: A wind turbine blade has a blade body and a leading edge fairing. The blade body has a root, a tip, and a longitudinal direction extending between the root and the tip. The 5 blade body also has a channel extending in the longitudinal direction. The leading edge fairing has a projection extending into the channel and extending in the longitudinal direction so as to be received in the channel Also, a leading edge fairing for attachment to a blade body of a wind turbine blade; a method of fitting a leading edge fairing to a wind turbine blade; and a kit of parts with a number of the leading edge fairings.
    Type: Application
    Filed: May 29, 2019
    Publication date: July 8, 2021
    Inventors: Gerner Larsen, Ian Stewart
  • Publication number: 20210088025
    Abstract: A system (24) and method are described herein for manufacturing a wind turbine blade (22) proximate to the final installation site of a wind turbine (10). The system (24) includes a creel (72) of feeders (74) configured to apply strengthening elements (62) onto a plurality of shell core sections (26) coupled together and fed through the creel (72). The shell core sections (26) include an external surface (56) with a plurality of external grooves (58) recessed into the external surface (56) such that the strengthening elements (62) are laid into the external grooves (58). The system (24) also includes a deposition station (78) configured to apply an outer surface material layer (82) in fluid form to cover the external surface (56) and the plurality of strengthening elements (62).
    Type: Application
    Filed: December 13, 2018
    Publication date: March 25, 2021
    Inventors: Gerner Larsen, Allan Hjarbæk Holm, Julio Xavier Vianna Neto, Abdalla Khamas, Miguel Fernandez Perez
  • Patent number: 10830209
    Abstract: A locking unit (24) for a rotor lock system (20) of a wind turbine (1), the locking unit (24) comprising: a locking shaft (34) that is slidably movable within a barrel (30) under the influence of an actuator (32); and an angular drive arrangement (48, 50) which is configured to enable angular movement of the locking shaft (34) about a longitudinal axis as the locking shaft (34) is moved linearly within the barrel (30) by the actuator (32).
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: November 10, 2020
    Assignee: Vestas Wind Systems A/S
    Inventor: Gerner Larsen
  • Publication number: 20200201332
    Abstract: In a first aspect, the embodiments of the invention provide a surveillance system for a wind park comprising a detection system configured to detect flying birds and issue a detection signal; one or more drones; and a control system configured to command one or more of said drones to be deployed based on the detection of birds flying in the vicinity of the wind park. The invention extends to a wind park comprising a plurality of wind turbines and a system as defined above. The invention also embraces a method of operating a surveillance system in a wind park, comprising scanning a geographical area proximal to a wind park using a surveillance system for the detection of birds; on detecting the presence of birds in the vicinity of the wind park, automatically commanding the deployment of one or more drones to act as a deterrent to the detected birds.
    Type: Application
    Filed: June 21, 2018
    Publication date: June 25, 2020
    Inventors: Gunnar K. Storgaard Pedersen, Christian Skov Frederiksen, Gerner Larsen, Ivar J.B.K. Jensen, Klaus Lynge Petersen
  • Publication number: 20200116128
    Abstract: A system for a wind park including: a control system in communication with a plurality of unmanned air vehicles, wherein the control system is configured to deploy one or more unmanned air vehicles during a triggering condition; and wherein the deployed unmanned air vehicles are guided towards an assigned wind turbine and to interact with a blade of that wind turbine in order to control oscillation of the blade. The invention also embraces a method for reducing blade oscillations of a wind turbine, comprising: monitoring for a triggering condition associated with the wind turbine; on detecting the triggering condition, deploying unmanned air vehicles towards a wind turbine and interacting with a blade of the wind turbine using the unmanned air to control oscillation of the blade. The invention therefore provides an efficient approach to controlling blade oscillations with minimal human operator involvement.
    Type: Application
    Filed: June 21, 2018
    Publication date: April 16, 2020
    Inventors: Gunnar K. Storgaard Pedersen, Ivar J.B.K. Jensen, Gerner Larsen, Christian Skov Frederiksen, Klaus Lynge Petersen
  • Publication number: 20200109698
    Abstract: A method of handling a wind turbine component for assembly or maintenance, comprising moving one or more unmanned air vehicles to respective positions proximal to a wind turbine component so that the wind turbine component can be supported by the one or more unmanned air vehicles; and controlling the one or more unmanned air vehicles to lift the wind turbine component and manoeuvre said component with respect to a wind turbine. The invention extends to a system for handling a component of a wind turbine, comprising a plurality of unmanned air vehicles (UAVs); a UAV ground station computer system; and one or more lifting harnesses for carrying by the plurality of unmanned air vehicles.
    Type: Application
    Filed: June 21, 2018
    Publication date: April 9, 2020
    Applicant: Vestas Wind Systems A/S
    Inventors: Gunnar K. Storgaard Pedersen, Christian Skov Frederiksen, Anton Bech, Gerner Larsen, Ivar J.B.K. Jensen, Klaus Lynge Petersen
  • Publication number: 20190277254
    Abstract: A locking unit (24) for a rotor lock system (20) of a wind turbine (1), the locking unit (24) comprising: a locking shaft (34) that is slidably movable within a barrel (30) under the influence of an actuator (32); and an angular drive arrangement (48, 50) which is configured to enable angular movement of the locking shaft (34) about a longitudinal axis as the locking shaft (34) is moved linearly within the barrel (30) by the actuator (32).
    Type: Application
    Filed: July 17, 2017
    Publication date: September 12, 2019
    Inventor: Gerner Larsen
  • Patent number: 10138865
    Abstract: A method of removing a wind turbine component includes assembling a transport system having a track, one or more support frames, and a carriage movably coupled to the track, the transport system having a first end positioned inside the tower and a second end positioned outside of the tower such that the track extends through an opening in the tower; raising the wind turbine component off of a platform located within the tower and above the door; moving at least part of the platform to allow the component to pass; lowering the wind turbine component onto the carriage; moving the carriage along the track from inside the tower to outside the tower; and removing the wind turbine component from the carriage. A transport system having a track, one or more support frames, and a carriage is also disclosed.
    Type: Grant
    Filed: November 28, 2013
    Date of Patent: November 27, 2018
    Assignee: Vestas Wind Systems A/S
    Inventors: Gerner Larsen, Tobias Lidegaard Rossel, Satish Raja Arigela
  • Patent number: 10100482
    Abstract: The present invention provides a method of installing a foundation for an offshore wind turbine and a template for use herein. In illustrative embodiments, the template is releasably anchored in a seafloor and the template is leveled before installing a pile. In a method according to some illustrative embodiments herein, a template may be provided, the template comprising at least one hollow guiding element for receiving the pile, at least one suction bucket, a frame body to which the at least one hollow guiding element and the at least one suction bucket are coupled, and controlling means configured to supply a pressure to the at least one suction bucket.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: October 16, 2018
    Assignee: MHI Vestas Offshore Wind A/S
    Inventors: Gerner Larsen, Niels Christian Olsen
  • Patent number: 9765547
    Abstract: A node structure (12, 14) for connecting two or more convergent members (16, 26) of a lattice frame to each other and to one or more other members of the lattice frame. The node structure (12, 14) comprises a pair of opposed spaced-apart faces (30) that are substantially planar and substantially parallel to each other. At least one pair of root formations (32) with respective central longitudinal axes define an interior angle between them, those axes diverging outwardly for alignment with respective members of the lattice frame and converging inwardly between the faces (30). An inner connecting wall (34) between the root formations (32) of the pair connects concave-curved inner edges (36) of the faces and extends in a concave curve around the interior angle to join the root formations (32) of that pair.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: September 19, 2017
    Assignee: MHI Vestas Offshore Wind A/S
    Inventors: Gerner Larsen, Niels Christian Olsen
  • Patent number: 9702137
    Abstract: A node structure for connecting a member of a lattice frame to one or more other members of the frame comprises a hollow brace having opposed walls that converge outwardly at an acute angle in cross-section toward a central plane to connect at an outer edge. At least one root portion has a central longitudinal axis extending outwardly in the central plane of the brace for alignment with a member of the frame. The root portion has an inner end cut away at opposite sides around the central plane to leave a joining surface that intersects the converging walls of the brace while embracing an outer region of the brace extending inwardly from the outer edge.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: July 11, 2017
    Assignee: MHI Vestas Offshore Wind A/S
    Inventors: Gerner Larsen, Niels Christian Olsen
  • Patent number: 9564786
    Abstract: A generator for a wind turbine is disclosed. The generator comprises a rotor configured to rotate about a rotational axis, and at least one stator arranged next to the rotor. Each stator comprises at least one flux-generating module facing the rotor but spaced therefrom, thereby forming an air gap between the rotor and each flux-generating module. Each stator also comprises at least one bearing unit, each bearing unit comprising a body defining a cavity with an open end facing the rotor. The generator further comprises a source of pressurized fluid communicating with each bearing unit, and the body of each bearing unit directs the fluid towards the rotor to help maintain the air gap between the rotor and each flux-generating module. Thereby the air gap between the rotor and the flux-generating modules is controlled by means of the fluid bearing units. The invention further provides a wind turbine comprising such a generator.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: February 7, 2017
    Assignee: Vestas Wind Systems A/S
    Inventors: Michael Staghøj, Gerner Larsen, Niels Christian Olsen, Frank Møller Hansen, Jörg Wadehn
  • Publication number: 20160208453
    Abstract: The present invention provides a method of installing a foundation for an offshore wind turbine and a template for use herein. In illustrative embodiments, the template is releasably anchored in a seafloor and the template is leveled before installing a pile. In a method according to some illustrative embodiments herein, a template may be provided, the template comprising at least one hollow guiding element for receiving the pile, at least one suction bucket, a frame body to which the at least one hollow guiding element and the at least one suction bucket are coupled, and controlling means configured to supply a pressure to the at least one suction bucket.
    Type: Application
    Filed: August 28, 2014
    Publication date: July 21, 2016
    Inventors: Gerner Larsen, Niels Christian Olsen
  • Patent number: 9362787
    Abstract: A generator (5) for a wind turbine (1) is disclosed. The generator (5) comprises a rotor (3) configured to rotate about a rotational axis, and at least one stator (4) arranged next to the rotor (3). Each stator (4) comprises at least two subunits (8), the subunits (8) being arranged side-by-side along a moving direction of the rotor (3). Each subunit (8) comprises at least one flux-generating module (9) facing the rotor (3) but spaced therefrom, thereby defining an air gap between the rotor (3) and each flux-generating module (9). The subunits (8) are movable relative to each other along a direction which is substantially transverse to the moving direction of the rotor (3). This allows a subunit (8) to move in a manner which adjusts the air gap without affecting the position and the air gap of a neighboring subunit (8). Thereby variations in the rotor (3) can be compensated and a uniform and constant air gap can be maintained.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: June 7, 2016
    Assignee: Vestas Wind Systems A/S
    Inventors: Michael Staghøj, Gerner Larsen, Niels Christian Olsen, Frank Møller Hansen
  • Patent number: 9249784
    Abstract: A transition structure for a tower comprises a plurality of panels that each includes a panel body having opposed upper and lower ends, a lower mounting surface at the lower end, an upper mounting surface at the upper end, and a pair of lateral mounting surfaces at lateral edges. The upper mounting surfaces are generally planar, and the panel bodies taper from their upper mounting surface to their lower mounting surface. Each panel is mounted to at least another of the panels at corresponding lateral surfaces to form, with the upper ends, the shape that conforms to the lower end of the tower to be supported. The transition structure also comprises a plurality of footings, each having an upper end mated to the lower mounting surface of one of the panels, a lower end configured to mate with a post of a foundation, and a footing body between the upper and lower ends.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: February 2, 2016
    Assignee: Vestas Wind Systems A/S
    Inventors: Gerner Larsen, Niels Christian Olsen
  • Publication number: 20150316024
    Abstract: A method of removing a wind turbine component includes assembling a transport system having a track, one or more support frames, and a carriage movably coupled to the track, the transport system having a first end positioned inside the tower and a second end positioned outside of the tower such that the track extends through an opening in the tower; raising the wind turbine component off of a platform located within the tower and above the door; moving at least part of the platform to allow the component to pass; lowering the wind turbine component onto the carriage; moving the carriage along the track from inside the tower to outside the tower; and removing the wind turbine component from the carriage. A transport system having a track, one or more support frames, and a carriage is also disclosed.
    Type: Application
    Filed: November 28, 2013
    Publication date: November 5, 2015
    Applicant: VESTAS WIND SYSTEMS A/S
    Inventors: Gerner Larsen, Tobias Lidegaard Rossel, Satish Raja Arigela