Patents by Inventor Gero Nordmann

Gero Nordmann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050132510
    Abstract: The present invention relates to aqueous liquid formulations comprising 5-25% by weight of a dye composition comprising 70-95% by weight of a dye obtainable by reduction or thermal treatment of Direct Yellow 11 1-30% by weight of a blue direct dye and 0-20% by weight of a red direct dye (all based on the dye composition) 1-15% by weight of a saturated, cyclic or acyclic water-soluble amine comprising a primary, secondary or tertiary amino group and at least one further functional group selected from primary, secondary and tertiary amino groups, OH groups and ether groups, and 1-30% by weight of urea based on the total weight of the aqueous liquid formulation, wherein the total amount of water-soluble amine and urea does not exceed 40% by weight, and also their use for dyeing cellulose material especially paper.
    Type: Application
    Filed: November 23, 2004
    Publication date: June 23, 2005
    Applicant: BASF Akiengesellschaft
    Inventors: Jurgen Decker, Gero Nordmann, Ingo Klopp, Gunter-Rudolf Schroder, Helmut Reichelt, Christoph Bomba
  • Patent number: 6867298
    Abstract: The present invention relates to copper-catalyzed carbon-heteroatom and carbon-carbon bond-forming methods. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of an amide or amine moiety and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In additional embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between a nitrogen atom of an acyl hydrazine and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In other embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of a nitrogen-containing heteroaromatic, e.g., indole, pyrazole, and indazole, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: March 15, 2005
    Assignee: Massachusetts Institute of Technology
    Inventors: Stephen L. Buchwald, Artis Klapars, Jon C. Antilla, Gabriel E. Job, Martina Wolter, Fuk Y. Kwong, Gero Nordmann, Edward J. Hennessy
  • Patent number: 6759554
    Abstract: The present invention relates to copper-catalyzed carbon-heteroatom and carbon-carbon bond-forming methods. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of an amide or amine moiety and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In additional embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between a nitrogen atom of an acyl hydrazine and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In other embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of a nitrogen-containing heteroaromatic, e.g., indole, pyrazole, and indazole, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: July 6, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Stephen L. Buchwald, Artis Klapars, Jon C. Antilla, Gabriel E. Job, Martina Wolter, Fuk Y. Kwong, Gero Nordmann, Edward J. Hennessy
  • Publication number: 20040019216
    Abstract: The present invention relates to copper-catalyzed carbon-heteroatom and carbon-carbon bond-forming methods. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of an amide or amine moiety and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In additional embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between a nitrogen atom of an acyl hydrazine and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In other embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of a nitrogen-containing heteroaromatic, e.g., indole, pyrazole, and indazole, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate.
    Type: Application
    Filed: May 8, 2003
    Publication date: January 29, 2004
    Inventors: Stephen L. Buchwald, Artis Klapars, Jon C. Antilla, Gabriel E. Job, Martina Wolter, Fuk Y. Kwong, Gero Nordmann, Edward J. Hennessy
  • Publication number: 20030065187
    Abstract: The present invention relates to copper-catalyzed carbon-heteroatom and carbon-carbon bond-forming methods. In certain embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of an amide or amine moiety and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In additional embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between a nitrogen atom of an acyl hydrazine and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate. In other embodiments, the present invention relates to copper-catalyzed methods of forming a carbon-nitrogen bond between the nitrogen atom of a nitrogen-containing heteroaromatic, e.g., indole, pyrazole, and indazole, and the activated carbon of an aryl, heteroaryl, or vinyl halide or sulfonate.
    Type: Application
    Filed: April 24, 2002
    Publication date: April 3, 2003
    Inventors: Stephen L. Buchwald, Artis Klapars, Jon C. Antilla, Gabriel E. Job, Martina Wolter, Fuk Y. Kwong, Gero Nordmann, Edward J. Hennessy