Patents by Inventor Gerrit Waters

Gerrit Waters has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240300875
    Abstract: The invention relates to a process for obtaining isobutene from an isobutene containing C4-hydrocarbon mixture (1) in a plant comprising an etherification unit (3), a first distillation unit (5), an ether cleavage unit (8) and a second distillation unit (10), the process comprising: (a) contacting the C4-hydrocarbon mixture (1) with a primary alcohol (2) and reacting the mixture with the primary alcohol in the presence of an acidic catalyst to form the corresponding alkyl tert-butyl ether as an intermediate product and diisobutene as a by-product in the etherification unit (3): (b) distilling the reaction mixture (4) from the etherification unit (3) in the first distillation unit (5), a C4-hydrocarbon raffinate being withdrawn as the overhead product (6), the alkyl tert-butyl ether and diisobutene being withdrawn as the liquid or vaporous bottom product (7), and vaporizing the bottom product (7) if it is withdrawn as a liquid: (c) reacting the vaporous bottom product (7) in the presence of an acidic catalyst
    Type: Application
    Filed: March 1, 2022
    Publication date: September 12, 2024
    Inventors: Hans-Guenter WAGNER, Suman THOTLA, Randolf HUGO, Gerrit WATERS, Michael HUEBNER, Markus NEUDERT, Thomas ROUSSIERE
  • Publication number: 20240216861
    Abstract: The invention relates to a process for decomposing nitrous oxide from a gas stream (1).
    Type: Application
    Filed: January 5, 2022
    Publication date: July 4, 2024
    Inventors: Andreas WOELFERT, Michael LORENZ, Gerrit WATERS, Marcu REBLE, Holger FRIEDRICH, Andreas WEICKGENANNT, Wolfgang GMEINER
  • Publication number: 20240216862
    Abstract: The invention relates on a process for working-up a nitrous oxide comprising off-gas stream from a production process of adipic acid by decomposing the nitrous oxide contained in the off-gas stream into nitrogen and oxygen in a fixed bed reactor (21) of a N2O decomposition unit (9) at a temperature in the range from 430 to 800° C. to obtain a purified gas, wherein for controlling the N2O decomposition unit (9) a nonlinear model predictive control is used which is based on a reactor model of the fixed bed reactor based on equations of energy transport and species transport for nitrogen, oxygen and N2O.
    Type: Application
    Filed: January 5, 2022
    Publication date: July 4, 2024
    Inventors: Andreas WÖLFERT, Michael LORENZ, Gerrit WATERS, Marcus REBLE, Holger FRIEDRICH, Andreas WEICKGENANNT, Wolfgang GMEINER
  • Publication number: 20240150264
    Abstract: The invention relates to a process for obtaining isobutene from an isobutene containing C4-hydrocarbon mixture (1) in a plant comprising an etherification unit (3), a first distillation unit (5), an ether cleavage unit (10) and a second distillation unit (12), the process comprising: (a) contacting the C4-hydrocarbon mixture (1) with a primary alcohol (2) and reacting the mixture with the primary alcohol in the presence of an acidic catalyst to form the corresponding alkyl tert-butyl ether in the etherification unit (3); (b) distilling the reaction mixture (4) from the etherification unit (3) in the first distillation unit (5), a C4-hydrocarbon raffinate being withdrawn as the overhead product (6), and the alkyl tert-butyl ether being withdrawn as the bottom product (7); (c) vaporizing the bottom product from the first distillation unit (5) in an evaporator (8) obtaining a vapor stream (9); (d) reacting the vapor stream (9) of step (c) in the presence of an acidic catalyst obtaining isobutene and the primary
    Type: Application
    Filed: March 1, 2022
    Publication date: May 9, 2024
    Inventors: Suman THOTLA, Hans-Guenter Wagner, Randolf HUGO, Gerrit WATERS, Michael HUEBNER, Markus NEUDERT, Thomas ROUSSIERE
  • Publication number: 20240140887
    Abstract: The invention relates to a process for starting up a plant for removing isobutene from an isobutene-containing C4-hydrocarbon mixture, the plant comprising an etherification unit containing moist acidic ion exchange resin, a first distillation unit, an ether cleavage unit, and a second distillation unit. The invention further relates to a process for shutting down the plant from a stationary operation mode.
    Type: Application
    Filed: March 1, 2022
    Publication date: May 2, 2024
    Inventors: Hans-Guenter WAGNER, Suman THOTLA, Gerrit WATERS, Michael HUEBNER, Markus NEUDERT, Randolph HUGO, Thomas ROUSSIERE
  • Publication number: 20240140885
    Abstract: The invention relates to a process for obtaining isobutene from an isobutene containing C4-hydrocarbon mixture (1) in a plant comprising an etherification unit (3), a first distillation unit (5), an ether cleavage unit (8) and a second distillation unit (10), the process comprising: (a) contacting the C4-hydrocarbon mixture (1) with a primary alcohol (2) and reacting the mixture with the primary alcohol in the presence of an acidic catalyst to form the corresponding alkyl tert-butyl ether as an intermediate product and diisobutene as a by-product in the etherification unit (3); (b) distilling the reaction mixture (4) from the etherification unit (3) in the first distillation unit (5), a C4-hydrocarbon raffinate being withdrawn as the overhead product (6), the alkyl tert-butyl ether and diisobutene being withdrawn as the liquid or vaporous bottom product (7), and vaporizing the bottom product (7) if it is withdrawn as a liquid; (c) reacting the vaporous bottom product (7) in the presence of an acidic catalyst
    Type: Application
    Filed: March 1, 2022
    Publication date: May 2, 2024
    Inventors: Hans-Guenter WAGNER, Randolph HUGO, Thomas ROUSSIERE, Suman THOTLA, Gerrit WATERS, Michael HUEBNER, Markus NEUDERT
  • Patent number: 11579098
    Abstract: A method for detecting deposits in a pipe system of an apparatus is proposed, the apparatus being flowed through by a fluid. In the method it is provided that at least one microwave probe is introduced into the pipe system in such a way that the fluid flows against a window (102) of the microwave probe that is transparent to microwave radiation, and that microwaves are coupled into the pipe system by way of at least one microwave probe, wherein a reflection measurement is carried out with one or two microwave probes, and/or at least two microwave probes are introduced into the pipe system at a distance from one another and a transmission measurement is carried out, wherein a comparison of measurement data with a reference or a previous measurement is used to deduce a constriction in the pipe system segment and the free cross-section at the constriction is determined, the detection of a constriction being used to deduce the presence of deposits.
    Type: Grant
    Filed: August 3, 2017
    Date of Patent: February 14, 2023
    Assignee: BASF SE
    Inventors: Gerrit Waters, Ingolf Hennig, Steffen Wagloehner, Eric Jenne, Heinrich Laib
  • Publication number: 20190195810
    Abstract: A method for detecting deposits in a pipe system of an apparatus is proposed, the apparatus being flowed through by a fluid. In the method it is provided that at least one microwave probe is introduced into the pipe system in such a way that the fluid flows against a window (102) of the microwave probe that is transparent to microwave radiation, and that microwaves are coupled into the pipe system by way of at least one microwave probe, wherein a reflection measurement is carried out with one or two microwave probes, and/or at least two microwave probes are introduced into the pipe system at a distance from one another and a transmission measurement is carried out, wherein a comparison of measurement data with a reference or a previous measurement is used to deduce a constriction in the pipe system segment and the free cross-section at the constriction is determined, the detection of a constriction being used to deduce the presence of deposits.
    Type: Application
    Filed: August 3, 2017
    Publication date: June 27, 2019
    Inventors: Gerrit WATERS, Ingolf HENNIG, Steffen WAGLOEHNER, Eric JENNE, Heinrich LAIB
  • Patent number: 9308515
    Abstract: The invention relates to a process for preparing aromatic amines by hydrogenation of corresponding nitroaromatics by means of hydrogen, and also an apparatus suitable for this purpose. In particular, the invention relates to a process for preparing toluenediamine (TDA) by hydrogenation of dinitrotoluene (DNT).
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: April 12, 2016
    Assignee: BASF SE
    Inventors: Gerrit Waters, Johannes Buettner, Andreas Raichle, Markus Hiller, Peter Renze, Michael Herrich, Helmut Rueger, Burkhard Hantel, Arndt Hofmann, Ruediger Fritz, Kathrin Richter, Holgar Braunsberg, Lothar Bruntsch
  • Patent number: 8957257
    Abstract: A process for a continuous production of a polyetherol first involves reacting a catalyst (5) with an alcohol starter (3) or an alkoxylated precursor, to give a mixture comprising an alcoholate and water. Water is then removed from the mixture. The process further involves feeding the alcoholate into a bubble column and feeding an alkylene oxide into the bottom of a compartment of the bubble column, such that the alkylene oxide rises in the alcoholate. The alkylene oxide then reacts with the alcoholate or a secondary product from the reaction between the alcoholate and alkylene oxide, to give the polyetherol.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: February 17, 2015
    Assignee: BASF SE
    Inventors: Vinit Chilekar, Oliver Bey, Andreas Brodhagen, Achim Loffler, Fatemeh Admadnian, Ralf Bohling, Christoph Grossmann, Ulrich Kammel, Ronald Adelmann, Thomas Ostrowski, Milind Joshi, Gerrit Waters, Dirk Meckelnburg
  • Publication number: 20140341783
    Abstract: The invention relates to a process for preparing aromatic amines by hydrogenation of corresponding nitroaromatics by means of hydrogen, and also an apparatus suitable for this purpose. In particular, the invention relates to a process for preparing toluenediamine (TDA) by hydrogenation of dinitrotoluene (DNT).
    Type: Application
    Filed: July 14, 2014
    Publication date: November 20, 2014
    Applicant: BASF SE
    Inventors: Gerrit WATERS, Johannes BUETTNER, Andreas RAICHLE, Markus HILLER, Peter RENZE, Michael HERRICH, Helmut RUEGER, Burkhard HANTEL, Arndt HOFMANN, Ruediger FRITZ, Kathrin RICHTER, Holgar BRAUNSBERG, Lothar BRUNTSCH
  • Patent number: 8835688
    Abstract: The invention relates to a process for preparing aromatic amines by hydrogenation of corresponding nitroaromatics by means of hydrogen, and also an apparatus suitable for this purpose. In particular, the invention relates to a process for preparing toluenediamine (TDA) by hydrogenation of dinitrotoluene (DNT).
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: September 16, 2014
    Assignee: BASF SE
    Inventors: Gerrit Waters, Johannes Buettner, Andreas Raichle, Markus Hiller, Peter Renze, Michael Herrich, Helmut Rueger, Burkhard Hantel, Arndt Hofmann, Ruediger Fritz, Kathrin Richter, Holgar Braunsberg, Lothar Bruntsch
  • Patent number: 8686182
    Abstract: The invention relates to a process for preparing isocyanates and/or polyisocyanates by reacting the corresponding amines with phosgene, optionally in the presence of an inert medium, in a reactor (1), a first reactant stream comprising the amine being supplied to the reactor (1) in liquid form, and a second reactant stream comprising the phosgene being supplied to the reactor in gaseous form. The reactor is a centrifugal reactor (1) having a packing (9) which rotates about a central axis (7) in a housing (13), the first reactant stream and the second reactant stream being supplied to the rotating packing (9) such that the reactant streams are mixed due to the centrifugal force in the rotating packing (9) and are transported outward, the mixing in the rotating packing (9) resulting in reaction of the phosgene with the amine to give the corresponding isocyanate or polyisocyanate.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: April 1, 2014
    Assignee: BASF SE
    Inventors: Julia Leschinski, Torsten Mattke, Gerrit Waters, Eckhard Stroefer
  • Patent number: 8673157
    Abstract: The present invention relates to a reactor for the photocatalytic treatment of liquid or gaseous streams, which reactor comprises a tube through which the stream to be treated flows, wherein, in the tube, there are arranged at least one light source, at least one flat means M1 provided with at least one photocatalytically active material and at least one flat means M2 reflecting the light radiation radiated by the at least one light source, wherein the reflecting surface of the at least one means M2 and the inner wall of the tube are at an angle greater than or equal to 0°, in such a manner that the light exiting from the light source is reflected by the at least one means M2 onto the photocatalytically active material, and to a method for the photocatalytic treatment of liquid or gaseous streams by irradiation with light in the reactor according to the invention.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: March 18, 2014
    Assignee: BASF SE
    Inventors: Grigorios Kolios, Florina Corina Patcas, Goetz-Peter Schindler, Alexandra Seeber, Gerrit Waters
  • Patent number: 8609887
    Abstract: The present invention relates to a process for preparing polyisocyanates comprising biuret groups from diisocyanates or polyisocyanates and diamines.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: December 17, 2013
    Assignee: BASF SE
    Inventors: Julia Leschinski, Torsten Mattke, Gerrit Waters, Horst Binder, Harald Schaefer, Matthias Kroner, Alexander Bayer
  • Patent number: 8487150
    Abstract: In the process for hydrogenating butadiyne over a catalyst which comprises at least one platinum group metal on an inorganic metal oxide as a support, the hydrogenation is performed at a pressure in the range from 1 to 40 bar and a temperature in the range from 0 to 100° C., and from 0.05 to 5% by weight, based on the overall catalyst, of platinum group metal is present on the support.
    Type: Grant
    Filed: June 16, 2009
    Date of Patent: July 16, 2013
    Assignee: BASF SE
    Inventors: Lucia Koenigsmann, Ekkehard Schwab, Piotr Makarczyk, Kai Rainer Ehrhardt, Maximilian Vicari, Thomas Heidemann, Dirk Grossschmidt, Gerrit Waters
  • Publication number: 20130109883
    Abstract: The invention relates to a process for preparing isocyanates and/or polyisocyanates by reacting the corresponding amines with phosgene, optionally in the presence of an inert medium, in a reactor (1), a first reactant stream comprising the amine being supplied to the reactor (1) in liquid form, and a second reactant stream comprising the phosgene being supplied to the reactor in gaseous form. The reactor is a centrifugal reactor (1) having a packing (9) which rotates about a central axis (7) in a housing (13), the first reactant stream and the second reactant stream being supplied to the rotating packing (9) such that the reactant streams are mixed due to the centrifugal force in the rotating packing (9) and are transported outward, the mixing in the rotating packing (9) resulting in reaction of the phosgene with the amine to give the corresponding isocyanate or polyisocyanate.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Inventors: Julia Leschinski, Torsten Mattke, Gerrit Waters, Eckhard Stroefer
  • Publication number: 20130023700
    Abstract: A process for a continuous production of a polyetherol first involves reacting an alcohol with a starter or an alkoxylated precursor, to give a mixture comprising an alcoholate and water. Water is then removed from the mixture. The process further involves feeding the alcoholate into a bubble column and feeding an alkylene oxide into the bottom of a compartment of the bubble column, such that the alkylene oxide rises in the alcoholate. The alkylene oxide then reacts with the alcoholate or a secondary product from the reaction between the alcoholate and alkylene oxide, to give the polyetherol.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 24, 2013
    Applicant: BASF SE
    Inventors: Vinit Chilekar, Oliver Bey, Andreas Brodhagen, Achim Löffler, Fatemeh Ahmadnian, Ralf Böhling, Christoph Grossmann, Ulrich Kammel, Ronald Adelmann, Thomas Ostrowski, Milind Joshi, Gerrit Waters, Dirk Meckelnburg
  • Publication number: 20120238779
    Abstract: The invention relates to a process for preparing aromatic amines by hydrogenation of corresponding nitroaromatics by means of hydrogen, and also an apparatus suitable for this purpose. In particular, the invention relates to a process for preparing toluenediamine (TDA) by hydrogenation of dinitrotoluene (DNT).
    Type: Application
    Filed: March 15, 2012
    Publication date: September 20, 2012
    Applicant: BASF SE
    Inventors: Gerrit WATERS, Johannes Büttner, Andreas Raichle, Markus Hiller, Peter Renze, Michael Herrich, Helmut Rüger, Burkhard Hantel, Arndt Hofmann, Rüdiger Fritz, Kathrin Richter, Holgar Braunsberg, Lothar Bruntsch
  • Publication number: 20120226071
    Abstract: The present invention relates to a process for preparing polyisocyanates comprising biuret groups from diisocyanates or polyisocyanates and diamines.
    Type: Application
    Filed: March 1, 2012
    Publication date: September 6, 2012
    Applicant: BASF SE
    Inventors: Julia Leschinski, Torsten Mattke, Gerrit Waters, Horst Binder, Harald Schäfer, Matthias Kroner, Alexander Bayer