Patents by Inventor Gert Burbach

Gert Burbach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8796807
    Abstract: By incorporating germanium material into thermal sensing diode structures, the sensitivity thereof may be significantly increased. In some illustrative embodiments, the process for incorporating the germanium material may be performed with high compatibility with a process flow for incorporating a silicon/germanium material into P-channel transistors of sophisticated semiconductor devices. Hence, temperature control efficiency may be increased with reduced die area consumption.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: August 5, 2014
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Rolf Stephan, Markus Forsberg, Gert Burbach, Anthony Mowry
  • Publication number: 20120025276
    Abstract: By incorporating germanium material into thermal sensing diode structures, the sensitivity thereof may be significantly increased. In some illustrative embodiments, the process for incorporating the germanium material may be performed with high compatibility with a process flow for incorporating a silicon/germanium material into P-channel transistors of sophisticated semiconductor devices. Hence, temperature control efficiency may be increased with reduced die area consumption.
    Type: Application
    Filed: October 3, 2011
    Publication date: February 2, 2012
    Inventors: Rolf Stephan, Markus Forsberg, Gert Burbach, Anthony Mowry
  • Patent number: 7732291
    Abstract: By selectively performing a pre-amorphization implantation process in logic areas and memory areas, the negative effect of the interaction between stressed overlayers and dislocation defects may be avoided or at least significantly reduced in the memory areas, thereby increasing production yield and stability of the memory areas.
    Type: Grant
    Filed: December 8, 2006
    Date of Patent: June 8, 2010
    Assignee: Globalfoundries Inc.
    Inventors: Joe Bloomquist, Peter Javorka, Manfred Horstmann, Gert Burbach
  • Publication number: 20090218601
    Abstract: By incorporating germanium material into thermal sensing diode structures, the sensitivity thereof may be significantly increased. In some illustrative embodiments, the process for incorporating the germanium material may be performed with high compatibility with a process flow for incorporating a silicon/germanium material into P-channel transistors of sophisticated semiconductor devices. Hence, temperature control efficiency may be increased with reduced die area consumption.
    Type: Application
    Filed: September 4, 2008
    Publication date: September 3, 2009
    Inventors: Rolf Stephan, Markus Forsberg, Gert Burbach, Anthony Mowry
  • Patent number: 7354836
    Abstract: By using a disposable spacer approach for forming drain and source regions prior to an amorphization process for re-crystallizing a semiconductor region in the presence of a stressed spacer layer, possibly in combination with enhanced anneal techniques, such as laser and flash anneal processes, a more efficient strain-generating mechanism may be provided. Furthermore, the spacer for forming the metal silicide may be provided with reduced width, thereby positioning the respective metal silicide regions more closely to the channel region. Consequently, an overall enhanced performance may be obtained on the basis of the above-described techniques.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: April 8, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Jan Hoentschel, Andy Wei, Gert Burbach, Peter Javorka
  • Patent number: 7354839
    Abstract: Methods for forming asymmetric gate structures comprising spacer elements disposed on the opposed sides of a gate electrode and having a different width are disclosed. The asymmetric gate structures are employed to form an asymmetric design of a halo region and extension regions of a field effect transistor using a symmetric implantation scheme, or to further enhance the effectiveness of asymmetric implantation schemes. The transistor performance may be significantly enhanced for a given basic transistor architecture. In particular, a large overlap area may be created at the source side with a steep concentration gradient of the PN junction due to the provision of the halo region, whereas the drain overlap may be significantly reduced or may even be completely avoided to further enhance the transistor performance.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: April 8, 2008
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andy Wei, Gert Burbach, David Greenlaw
  • Publication number: 20070254444
    Abstract: By selectively performing a pre-amorphization implantation process in logic areas and memory areas, the negative effect of the interaction between stressed overlayers and dislocation defects may be avoided or at least significantly reduced in the memory areas, thereby increasing production yield and stability of the memory areas.
    Type: Application
    Filed: December 8, 2006
    Publication date: November 1, 2007
    Inventors: Joe Bloomquist, Peter Javorka, Manfred Horstmann, Gert Burbach
  • Publication number: 20070207583
    Abstract: A semiconductor structure comprising a first transistor element and a second transistor element is provided. Stress in channel regions of the first and the second transistor element is controlled by forming stressed layers having a predetermined stress over the transistors. The stressed layers may be used as etch stop layers in the formation of contact vias through an interlayer dielectric formed over the transistors.
    Type: Application
    Filed: May 8, 2007
    Publication date: September 6, 2007
    Inventors: Gert Burbach, Rolf Stephan, Karsten Wieczorek, Manfred Horstmann
  • Publication number: 20070202653
    Abstract: By using a disposable spacer approach for forming drain and source regions prior to an amorphization process for re-crystallizing a semiconductor region in the presence of a stressed spacer layer, possibly in combination with enhanced anneal techniques, such as laser and flash anneal processes, a more efficient strain-generating mechanism may be provided. Furthermore, the spacer for forming the metal silicide may be provided with reduced width, thereby positioning the respective metal silicide regions more closely to the channel region. Consequently, an overall enhanced performance may be obtained on the basis of the above-described techniques.
    Type: Application
    Filed: October 19, 2006
    Publication date: August 30, 2007
    Inventors: Jan Hoentschel, Andy Wei, Gert Burbach, Peter Javorka
  • Patent number: 7238578
    Abstract: A semiconductor structure comprising a first transistor element and a second transistor element is provided. Stress in channel regions of the first and the second transistor element is controlled by forming stressed layers having a predetermined stress over the transistors. The stressed layers may be used as etch stop layers in the formation of contact vias through an interlayer dielectric formed over the transistors.
    Type: Grant
    Filed: April 26, 2005
    Date of Patent: July 3, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Gert Burbach, Rolf Stephan, Karsten Wieczorek, Manfred Horstmann
  • Publication number: 20060194381
    Abstract: Methods for forming asymmetric gate structures comprising spacer elements disposed on the opposed sides of a gate electrode and having a different width are disclosed. The asymmetric gate structures are employed to form an asymmetric design of a halo region and extension regions of a field effect transistor using a symmetric implantation scheme, or to further enhance the effectiveness of asymmetric implantation schemes. The transistor performance may be significantly enhanced for a given basic transistor architecture. In particular, a large overlap area may be created at the source side with a steep concentration gradient of the PN junction due to the provision of the halo region, whereas the drain overlap may be significantly reduced or may even be completely avoided to further enhance the transistor performance.
    Type: Application
    Filed: October 11, 2005
    Publication date: August 31, 2006
    Inventors: Andy Wei, Gert Burbach, David Greenlaw
  • Publication number: 20060046400
    Abstract: A semiconductor structure comprising a first transistor element and a second transistor element is provided. Stress in channel regions of the first and the second transistor element is controlled by forming stressed layers having a predetermined stress over the transistors. The stressed layers may be used as etch stop layers in the formation of contact vias through an interlayer dielectric formed over the transistors.
    Type: Application
    Filed: April 26, 2005
    Publication date: March 2, 2006
    Inventors: Gert Burbach, Rolf Stephan, Karsten Wieczorek, Manfred Horstmann
  • Patent number: 7005380
    Abstract: A semiconductor device manufacturing method is provided where a device structure is formed on top of a wafer that comprises a backside semiconductor substrate, a buried insulator layer and a top semiconductor layer. Then, an etch stop layer is formed upon the wafer that carries the device structure, and a window is formed in the etch stop layer. Further, a dielectric layer is formed upon the etch stop layer that has the window. Then, a first contact hole through the dielectric layer and the window down to the backside semiconductor substrate is simultaneously etched with at least one second contact hole through the dielectric layer down to the device structure. The wafer may be a silicon-on-insulator (SOI) wafer, and the etch stop layer and the dielectric layer may be formed by depositing silicon oxynitride and tetraethyl orthosilicate (TEOS), respectively. The device structure may be a CMOS transistor structure.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: February 28, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Massud Aminpur, Gert Burbach, Christian Zistl
  • Publication number: 20060022197
    Abstract: By providing a test structure including a plurality of test pads, the anisotropic behavior of stress and strain influenced electrical characteristics, such as the electron mobility, may be determined in a highly efficient manner. Moreover, the test pads may enable the detection of stress and strain induced modifications with a spatial resolution in the order of magnitude of individual circuit elements.
    Type: Application
    Filed: April 6, 2005
    Publication date: February 2, 2006
    Inventors: Frank Wirbeleit, Gert Burbach, Karsten Wieczorek, Manfred Horstmann
  • Patent number: 6943088
    Abstract: In a trench isolation structure of a semiconductor device, oxide liners are formed within the trenches, wherein a non-oxidizable mask is employed during various oxidation steps, thereby creating different types of liner oxides and thus different types of corner rounding and thus mechanical stress. Therefore, for a specified type of circuit elements, the characteristics of the corresponding isolation trenches may be tailored to achieve an optimum device performance.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: September 13, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Ralf van Bentum, Stephan Kruegel, Gert Burbach
  • Patent number: 6905924
    Abstract: In an SOI diode structure, the conventional transistor-like MOS configuration is eliminated by replacing the polysilicon line by a completely dielectric region. This region may be used as an implantation mask to control a dopant gradient of a PN-junction that forms below the dielectric region. Moreover, during the salicide process, the dielectric region prevents the PN-junction from being shorted. Thus, a depletion of the active region caused by the MOS structure may be avoided. Therefore, the functioning of the PN-junction is maintained even for extremely thin semiconductor layers.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: June 14, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Gert Burbach, Manfred Horstmann, Thomas Feudel
  • Publication number: 20050101120
    Abstract: In a barrier formation process, an adhesion layer of refractory metal is deposited on sidewalls and bottom portions of a trench, and, subsequently, a nitride layer of the refractory metal is formed on the adhesion layer. After forming the nitride layer, the substrate is subjected to a heat treatment in a nitrogen-containing atmosphere to further convert residual refractory metal into nitride, thereby improving the barrier properties of the nitride layer in a subsequent process for filling in a contact metal, such as tungsten.
    Type: Application
    Filed: March 27, 2003
    Publication date: May 12, 2005
    Inventors: Fred Hause, Gert Burbach, Volker Kahlert
  • Patent number: 6821840
    Abstract: A semiconductor device comprises a field effect transistor and a passive capacitor, wherein the dielectric layer of the capacitor is comprised of a high-k material, whereas the gate insulation layer of the field effect transistor is formed of an ultra thin oxide layer or oxynitride layer so as to provide for superior carrier mobility at the interface between the gate insulation layer and the underlying channel region. Since carrier mobility in the capacitor is not of great importance, the high-k material allows the provision of high capacitance per unit area while featuring a thickness sufficient to effectively reduce leakage current.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: November 23, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Gert Burbach, Thomas Feudel
  • Publication number: 20040217421
    Abstract: A substantially ohmic substrate contact may be formed in an SOI semiconductor device by using a conductive material, such as aluminum, for the substrate contact that forms an ohmic contact even at low dopant concentrations, usually encountered in SOI substrates. Moreover, a process sequence is disclosed that allows the formation of the ohmic substrate contact at a high degree of compatibility with conventional dual contact approaches.
    Type: Application
    Filed: August 28, 2003
    Publication date: November 4, 2004
    Inventors: Massud Aminpur, Gert Burbach
  • Publication number: 20040188768
    Abstract: In an SOI diode structure, the conventional transistor-like MOS configuration is eliminated by replacing the polysilicon line by a completely dielectric region. This region may be used as an implantation mask to control a dopant gradient of a PN-junction that forms below the dielectric region. Moreover, during the salicide process, the dielectric region prevents the PN-junction from being shorted. Thus, a depletion of the active region caused by the MOS structure may be avoided. Therefore, the functioning of the PN-junction is maintained even for extremely thin semiconductor layers.
    Type: Application
    Filed: July 29, 2003
    Publication date: September 30, 2004
    Inventors: Gert Burbach, Manfred Horstmann, Thomas Feudel