Patents by Inventor GHAITHAN A. AL-MUNTASHERI

GHAITHAN A. AL-MUNTASHERI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11268016
    Abstract: A treatment fluid system for reducing permeability of high permeability zones in a subterranean reservoir formation comprising a fluid composition comprising a nano-crosslinker, the nano-crosslinker comprising a nanomaterial, and a crosslinker, wherein the crosslinker comprises a chemical group selected from the group consisting of carbonyl, sulfhydryl, amine and imine, wherein the nano-crosslinker is produced by a method selected from the group consisting of pre-treating the nanomaterial with the crosslinker such that the crosslinker has been functionalized onto the nanomaterial, embedding the crosslinker on the nanoparticle, grafting the crosslinker onto the nanomaterial, and coating the crosslinker on the nanomaterial, a base polymer, and a base fluid, the base fluid operable to suspend the fluid composition, wherein the base fluid comprises water, wherein the treatment fluid system is operable to reduce permeability of a high permeability zone in the subterranean reservoir formation.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: March 8, 2022
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Ghaithan Al-Muntasheri, Feng Liang, Hooisweng Ow, Jason Cox, Martin E. Poitzsch
  • Patent number: 11174178
    Abstract: A method includes mixing seawater with a two-part additive system configured to precipitate sulfate from the seawater; removing the sulfate precipitates from the seawater; and delivering the seawater into an oilfield reservoir.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 16, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Katherine Leigh Hull, Brent Cooper, Ghaithan A. Al-Muntasheri
  • Patent number: 11162020
    Abstract: A composition for use as a pressure-tolerant dual-crosslinker gel in a fracturing fluid that comprises polymer, the polymer operable to increase the viscosity of a fluid; boron-containing crosslinker, the boron-containing crosslinker operable to crosslink the polymer; and a transition metal oxide additive, the transition metal oxide additive operable to crosslink the polymer.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: November 2, 2021
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Feng Liang, Ghaithan Al-Muntasheri, Abdulrahman F. Alharbi
  • Patent number: 11041117
    Abstract: A polymer-encapsulated mineral acid solution and a method for forming the polymer-encapsulated mineral acid solution. Introducing a strong mineral acid solution to a monomer solution occurs such that a primary emulsion that is a water-in-oil type emulsion forms. Introducing the primary emulsion to a second aqueous solution forms a secondary emulsion that is a water-in-oil-in-water type double emulsion. The monomer in the secondary emulsion is cured such a polymerized shell forms that encapsulates the strong mineral acid solution and forms the capsule. The strong mineral acid solution has up to 30 wt. % strong mineral acid. A method of stimulating a hydrocarbon-bearing formation using the polymer-encapsulated mineral acid solution includes introducing a capsule suspension into a fissure in the hydrocarbon-bearing formation to be stimulated through a face in a well bore. The capsule is maintained within the fissure until the polymer shell degrades.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: June 22, 2021
    Assignees: ARAMCO SERVICES COMPANY, RTI INTERNATIONAL
    Inventors: Leah M. Johnson, Ghaithan Al-Muntasheri, Ginger Denison Rothrock, Sarah Shepherd
  • Patent number: 11041116
    Abstract: A polymer-encapsulated mineral acid solution and a method for forming the polymer-encapsulated mineral acid solution. Introducing a strong mineral acid solution to a monomer solution occurs such that a primary emulsion that is a water-in-oil type emulsion forms. Introducing the primary emulsion to a second aqueous solution forms a secondary emulsion that is a water-in-oil-in-water type double emulsion. The monomer in the secondary emulsion is cured such a polymerized shell forms that encapsulates the strong mineral acid solution and forms the capsule. The strong mineral acid solution has up to 30 wt. % strong mineral acid. A method of stimulating a hydrocarbon-bearing formation using the polymer-encapsulated mineral acid solution includes introducing a capsule suspension into a fissure in the hydrocarbon-bearing formation to be stimulated through a face in a well bore. The capsule is maintained within the fissure until the polymer shell degrades.
    Type: Grant
    Filed: November 5, 2019
    Date of Patent: June 22, 2021
    Assignees: ARAMCO SERVICES COMPANY, RTI INTERNATIONAL
    Inventors: Leah M. Johnson, Ghaithan Al-Muntasheri, Ginger Denison Rothrock, Sarah Shepherd
  • Patent number: 11001750
    Abstract: A fracturing fluid including a base fluid including salt water, a polymer, a crosslinker, and a nanomaterial. The crosslinker may include a Zr crosslinker, a Ti crosslinker, an Al crosslinker, a borate crosslinker, or a combination thereof. The nanomaterial may include ZrO2 nanoparticles, TiO2 nanoparticles, CeO2 nanoparticles; Zr nanoparticles, Ti nanoparticles, Ce nanoparticles, metal-organic polyhedra including Zr, Ti, Ce, or a combination thereof; carbon nanotubes, carbon nanorods, nano graphene, nano graphene oxide; or any combination thereof. The viscosity and viscosity lifetime of fracturing fluids with both crosslinkers and nanomaterials are greater than the sum of the effects of crosslinkers and nanomaterials taken separately.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: May 11, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Leiming Li, Feng Liang, Ghaithan A. Al-Muntasheri, Amy J. Cairns
  • Publication number: 20210102114
    Abstract: A composition for use as a pressure-tolerant dual-crosslinker gel in a fracturing fluid that comprises polymer, the polymer operable to increase the viscosity of a fluid; boron-containing crosslinker, the boron-containing crosslinker operable to crosslink the polymer; and a transition metal oxide additive, the transition metal oxide additive operable to crosslink the polymer.
    Type: Application
    Filed: December 18, 2020
    Publication date: April 8, 2021
    Applicants: Aramco Services Company, Saudi Arabian Oil Company
    Inventors: Feng LIANG, Ghaithan AL-MUNTASHERI, Abdulrahman F. ALHARBI
  • Publication number: 20210062072
    Abstract: A treatment fluid system for reducing permeability of high permeability zones in a subterranean reservoir formation comprising a fluid composition comprising a nano-crosslinker, the nano-crosslinker comprising a nanomaterial, and a crosslinker, wherein the crosslinker comprises a chemical group selected from the group consisting of carbonyl, sulfhydryl, amine and imine, wherein the nano-crosslinker is produced by a method selected from the group consisting of pre-treating the nanomaterial with the crosslinker such that the crosslinker has been functionalized onto the nanomaterial, embedding the crosslinker on the nanoparticle, grafting the crosslinker onto the nanomaterial, and coating the crosslinker on the nanomaterial, a base polymer, and a base fluid, the base fluid operable to suspend the fluid composition, wherein the base fluid comprises water, wherein the treatment fluid system is operable to reduce permeability of a high permeability zone in the subterranean reservoir formation.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Applicant: Saudi Arabian Oil Company
    Inventors: Ghaithan Al-Muntasheri, Feng Liang, Hooisweng Ow, Jason Cox, Martin E. Poitzsch
  • Patent number: 10899957
    Abstract: A composition for use as a pressure-tolerant dual-crosslinker gel in a fracturing fluid that comprises polymer, the polymer operable to increase the viscosity of a fluid; boron-containing crosslinker, the boron-containing crosslinker operable to crosslink the polymer; and a transition metal oxide additive, the transition metal oxide additive operable to crosslink the polymer.
    Type: Grant
    Filed: April 24, 2020
    Date of Patent: January 26, 2021
    Inventors: Feng Liang, Ghaithan Al-Muntasheri, Abdulrahman F. Alharbi
  • Patent number: 10894915
    Abstract: A stabilized emulsified acid composition for deep carbonate formation stimulation is provided. The stabilized acid emulsion composition includes a petroleum operable to provide a barrier between an acid and a reservoir rock, the acid operable to react with the reservoir rock to dissolve the reservoir rock and produce a wormhole, a functional framework operable to stabilize the stabilized acid emulsion, an emulsifier operable to stabilize the stabilized acid emulsion, and a corrosion inhibitor operable to provide protection against corrosion for the metal components of a well. The petroleum can be diesel. The acid can be hydrochloric acid. The functional framework can be selected from the group comprising surface-modified clay-based material, zeolites, hybrid organic-inorganic materials, covalent-organic framework materials, and boron nitride nanotubes, and combinations thereof. The functional framework can be a surface-modified clay material selected from an organoclay.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: January 19, 2021
    Inventors: Amy J. Cairns, Ghaithan A. Al-Muntasheri, Mohammed Sayed, Liling Fu, Genggeng Qi, Emmanuel P. Giannelis
  • Publication number: 20200362231
    Abstract: Gelled fluids include a gellable organic solvent, an aluminum crosslinking compound, and a mutual solvent. The gelled fluids may be prepared by combining an aluminum crosslinking compound and a first volume of a gellable organic solvent to form a pre-solvation mixture; gelling the pre-solvation mixture to form a pre-solvated gel; combining the pre-solvated gel with a formulation fluid to form a gellable mixture, the formulation fluid comprising a second volume of the gellable organic solvent; and gelling the gellable mixture to form the gelled fluid.
    Type: Application
    Filed: August 3, 2020
    Publication date: November 19, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Leiming Li, Ghaithan A. Al-Muntasheri, Feng Liang, Sehmus Ozden
  • Publication number: 20200325387
    Abstract: A fracturing fluid system for increasing hydrocarbon production in a subterranean reservoir formation comprising a fluid composition and a base fluid, the fluid composition comprising a nano-crosslinker, and a base polymer; and the base fluid operable to suspend the fluid composition, the base fluid comprising water; wherein the fluid composition and the base fluid are combined to produce the fracturing fluid system, wherein the fracturing fluid system is operable to stimulate the subterranean reservoir formation. In certain embodiments, the nano-crosslinker is an amine-containing nano-crosslinker and the base polymer is an acrylamide-based polymer. In certain embodiments, the fracturing fluid systems comprise proppants for enhancing hydraulic fracturing stimulation in a subterranean hydrocarbon reservoir.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Ghaithan Al-Muntasheri, Feng Liang, Hooisweng Ow, Jason Cox, Martin E. Poitzsch
  • Patent number: 10781360
    Abstract: Provided in this disclosure, in part, are methods, compositions, and systems for degrading organic matter, such as kerogen, in a subterranean formation. Further, these methods, compositions, and systems allow for increased hydraulic fracturing efficiencies in subterranean formations, such as unconventional rock reservoirs. Also provided in this disclosure is a method of treating kerogen in a subterranean formation including placing in the subterranean formation a composition that includes a first oxidizer including a persulfate and a second oxidizer including a bromate.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: September 22, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Katherine Leigh Hull, Ghaithan A. Al-Muntasheri, Younane N. Abousleiman, David Jacobi
  • Publication number: 20200255720
    Abstract: A composition for use as a pressure-tolerant dual-crosslinker gel in a fracturing fluid that comprises polymer, the polymer operable to increase the viscosity of a fluid; boron-containing crosslinker, the boron-containing crosslinker operable to crosslink the polymer; and a transition metal oxide additive, the transition metal oxide additive operable to crosslink the polymer.
    Type: Application
    Filed: April 24, 2020
    Publication date: August 13, 2020
    Inventors: Feng LIANG, Ghaithan AL-MUNTASHERI, Abdulrahman F. ALHARBI
  • Patent number: 10738236
    Abstract: A fracturing fluid system for increasing hydrocarbon production in a subterranean reservoir formation comprising a fluid composition and a base fluid, the fluid composition comprising a nano-crosslinker, and a base polymer; and the base fluid operable to suspend the fluid composition, the base fluid comprising water; wherein the fluid composition and the base fluid are combined to produce the fracturing fluid system, wherein the fracturing fluid system is operable to stimulate the subterranean reservoir formation. In certain embodiments, the nano-crosslinker is an amine-containing nano-crosslinker and the base polymer is an acrylamide-based polymer. In certain embodiments, the fracturing fluid systems comprise proppants for enhancing hydraulic fracturing stimulation in a subterranean hydrocarbon reservoir.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: August 11, 2020
    Assignee: SAUDI ARABIAN OIL COMPANY
    Inventors: Ghaithan Al-Muntasheri, Feng Liang, Hooisweng Ow, Jason Cox, Martin E. Poitzsch
  • Publication number: 20200231869
    Abstract: A polymer-encapsulated mineral acid solution and a method for forming the polymer-encapsulated mineral acid solution. Introducing a strong mineral acid solution to a monomer solution occurs such that a primary emulsion that is a water-in-oil type emulsion forms. Introducing the primary emulsion to a second aqueous solution forms a secondary emulsion that is a water-in-oil-in-water type double emulsion. The monomer in the secondary emulsion is cured such a polymerized shell forms that encapsulates the strong mineral acid solution and forms the capsule. The strong mineral acid solution has up to 30 wt. % strong mineral acid. A method of stimulating a hydrocarbon-bearing formation using the polymer-encapsulated mineral acid solution includes introducing a capsule suspension into a fissure in the hydrocarbon-bearing formation to be stimulated through a face in a well bore. The capsule is maintained within the fissure until the polymer shell degrades.
    Type: Application
    Filed: November 5, 2019
    Publication date: July 23, 2020
    Inventors: Leah M. JOHNSON, Ghaithan AL-MUNTASHERI, Ginger Denison ROTHROCK, Sarah SHEPHERD
  • Publication number: 20200231865
    Abstract: A fracturing fluid including a base fluid including salt water, a polymer, a crosslinker, and a nanomaterial. The crosslinker may include a Zr crosslinker, a Ti crosslinker, an Al crosslinker, a borate crosslinker, or a combination thereof. The nanomaterial may include ZrO2 nanoparticles, TiO2 nanoparticles, CeO2 nanoparticles; Zr nanoparticles, Ti nanoparticles, Ce nanoparticles, metal-organic polyhedra including Zr, Ti, Ce, or a combination thereof; carbon nanotubes, carbon nanorods, nano graphene, nano graphene oxide; or any combination thereof. The viscosity and viscosity lifetime of fracturing fluids with both crosslinkers and nanomaterials are greater than the sum of the effects of crosslinkers and nanomaterials taken separately.
    Type: Application
    Filed: April 7, 2020
    Publication date: July 23, 2020
    Inventors: Leiming Li, Feng Liang, Ghaithan A. Al-Muntasheri, Amy J. Cairns
  • Publication number: 20200231868
    Abstract: A polymer-encapsulated mineral acid solution and a method for forming the polymer-encapsulated mineral acid solution. Introducing a strong mineral acid solution to a monomer solution occurs such that a primary emulsion that is a water-in-oil type emulsion forms. Introducing the primary emulsion to a second aqueous solution forms a secondary emulsion that is a water-in-oil-in-water type double emulsion. The monomer in the secondary emulsion is cured such a polymerized shell forms that encapsulates the strong mineral acid solution and forms the capsule. The strong mineral acid solution has up to 30 wt. % strong mineral acid. A method of stimulating a hydrocarbon-bearing formation using the polymer-encapsulated mineral acid solution includes introducing a capsule suspension into a fissure in the hydrocarbon-bearing formation to be stimulated through a face in a well bore. The capsule is maintained within the fissure until the polymer shell degrades.
    Type: Application
    Filed: November 5, 2019
    Publication date: July 23, 2020
    Inventors: Leah M. JOHNSON, Ghaithan AL-MUNTASHERI, Ginger Denison ROTHROCK, Sarah SHEPHERD
  • Patent number: 10696892
    Abstract: Gelled hydrocarbon fracturing fluids and their methods of preparation and use are provided. The gelled hydrocarbon fracturing fluid includes a hydrocarbon fluid, a phosphate ester, a crosslinker and a viscosifier. The crosslinker may include iron, aluminum, or combinations thereof and the viscosifier may include clay, graphite, carbon nanotubes, metallic oxide nanoparticles, and combinations thereof. The method of preparation includes combining a hydrocarbon fluid, phosphate ester, and crosslinker to form a baseline fluid. A viscosifier is added to the baseline fluid to form a gelled hydrocarbon fracturing fluid. The method of use includes treating a subterranean formation by contacting a subterranean formation with a gelled hydrocarbon fracturing fluid and generating at least one fracture in the subterranean formation.
    Type: Grant
    Filed: May 31, 2017
    Date of Patent: June 30, 2020
    Assignee: Saudi Arabian Oil Company
    Inventors: Sehmus Ozden, Leiming Li, Ghaithan A. Al-Muntasheri, Feng Liang
  • Publication number: 20200199991
    Abstract: Fracturing a reservoir includes providing a pad fluid to the reservoir via a wellbore in a well to create fractures in the reservoir, providing a fracturing fluid to the fractures via the wellbore, providing a geopolymer precursor fluid to the fractures via the wellbore, shutting in the wellbore at a wellbore pressure, thereby allowing the geopolymer precursor fluid to harden and form geopolymer proppant pillars in the fractures. Providing the geopolymer precursor fluid to the fractures includes pulsing quantities of the geopolymer precursor fluid into a continuous flow of the fracturing fluid or alternately pulsing quantities of the geopolymer precursor fluid and the fracturing fluid. An elapsed time between pulsing the quantities of the geopolymer precursor fluid is between 2 seconds and 20 minutes.
    Type: Application
    Filed: February 28, 2020
    Publication date: June 25, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Ahmed M. Gomaa, Khalid R. Alnoaimi, Ghaithan A. Al-Muntasheri