Patents by Inventor Ghislain Turgeon

Ghislain Turgeon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220045749
    Abstract: A solid state power amplifier uses a Doherty power amplifier that can be implemented as a monolithic microwave integrated circuit. By adjusting the DC bias of the amplifying stages in each branch of the Doherty amplifier, the output power, linearity, and DC power can be adjusted to provide a specified output, where the specification for the output can include the maintaining of desired DC power and linearity. The Doherty power amplifier can be used in a satellite payload or other application utilizing solid state power amplifiers, while providing the proper amount of RF output power and DC power. A single amplifier can have its bias levels adjusted for different output levels, helping to minimize the number of designs that are required for a given satellite payload, reducing the variety of parts in a satellite payload.
    Type: Application
    Filed: October 25, 2021
    Publication date: February 10, 2022
    Applicant: Maxar Space LLC
    Inventors: Seyed Tabatabaei, Jim Sowers, Ghislain Turgeon
  • Patent number: 11196480
    Abstract: A solid state power amplifier uses a Doherty power amplifier that can be implemented as a monolithic microwave integrated circuit. By adjusting the DC bias of the amplifying stages in each branch of the Doherty amplifier, the output power, linearity, and DC power can be adjusted to provide a specified output, where the specification for the output can include the maintaining of desired DC power and linearity. The Doherty power amplifier can be used in a satellite payload or other application utilizing solid state power amplifiers, while providing the proper amount of RF output power and DC power. A single amplifier can have its bias levels adjusted for different output levels, helping to minimize the number of designs that are required for a given satellite payload, reducing the variety of parts in a satellite payload.
    Type: Grant
    Filed: November 14, 2019
    Date of Patent: December 7, 2021
    Assignee: Maxar Space LLC
    Inventors: Seyed Tabatabaei, Jim Sowers, Ghislain Turgeon
  • Publication number: 20200091996
    Abstract: A solid state power amplifier uses a Doherty power amplifier that can be implemented as a monolithic microwave integrated circuit. By adjusting the DC bias of the amplifying stages in each branch of the Doherty amplifier, the output power, linearity, and DC power can be adjusted to provide a specified output, where the specification for the output can include the maintaining of desired DC power and linearity. The Doherty power amplifier can be used in a satellite payload or other application utilizing solid state power amplifiers, while providing the proper amount of RF output power and DC power. A single amplifier can have its bias levels adjusted for different output levels, helping to minimize the number of designs that are required for a given satellite payload, reducing the variety of parts in a satellite payload.
    Type: Application
    Filed: November 14, 2019
    Publication date: March 19, 2020
    Applicant: Space Systems/Loral, LLC
    Inventors: Seyed Tabatabaei, Jim Sowers, Ghislain Turgeon
  • Publication number: 20200028475
    Abstract: An amplifier system includes an input network having a plurality of input ports; an output network having a plurality of output ports; a plurality of amplification units coupled between the input network and the output network, the plurality of amplification units configured to amplify signals from the plurality of input ports; and a calibration unit coupled between the plurality of amplification units and the output network to calibrate amplified signals from the plurality of amplification units.
    Type: Application
    Filed: June 20, 2017
    Publication date: January 23, 2020
    Applicant: SPACE SYSTEMS/LORAL, LLC
    Inventors: Ghislain Turgeon, Anton Weaver-Madsen, Vijaya Gallagher, Richard Hoffmeister, Zheng Tu
  • Patent number: 10541656
    Abstract: An amplifier system includes an input network having a plurality of input ports; an output network having a plurality of output ports; a plurality of amplification units coupled between the input network and the output network, the plurality of amplification units configured to amplify signals from the plurality of input ports; and a calibration unit coupled between the plurality of amplification units and the output network to calibrate amplified signals from the plurality of amplification units.
    Type: Grant
    Filed: June 20, 2017
    Date of Patent: January 21, 2020
    Assignee: Space Systems/Loral, LLC
    Inventors: Ghislain Turgeon, Anton Weaver-Madsen, Vijaya Gallagher, Richard Hoffmeister, Zheng Tu
  • Patent number: 10511377
    Abstract: A solid state power amplifier uses a Doherty power amplifier that can be implemented as a monolithic microwave integrated circuit. By adjusting the DC bias of the amplifying stages in each branch of the Doherty amplifier, the output power, linearity, and DC power can be adjusted to provide a specified output, where the specification for the output can include the maintaining of desired DC power and linearity. The Doherty power amplifier can be used in a satellite payload or other application utilizing solid state power amplifiers, while providing the proper amount of RF output power and DC power. A single amplifier can have its bias levels adjusted for different output levels, helping to minimize the number of designs that are required for a given satellite payload, reducing the variety of parts in a satellite payload.
    Type: Grant
    Filed: August 27, 2018
    Date of Patent: December 17, 2019
    Assignee: Space Systems/Loral, LLC
    Inventors: Seyed Tabatabaei, Jim Sowers, Ghislain Turgeon
  • Patent number: 10432308
    Abstract: A system described herein includes a ground based gateway subsystem configured to transmit an RF feeder uplink beam to a satellite, and a space based subsystem of the satellite configured to receive the RF feeder uplink beam and produce in dependence thereon an optical ISL beam that is transmitted to another satellite. The ground based gateway subsystem can include a ground based beamformer used to produce the RF feeder uplink beam. The optical ISL beam, produced by the space based subsystem and transmitted to the other satellite, can comprise a wavelength division multiplexed optical signal having RF frequencies within a same specified RF frequency range within which the other satellite is configured to transmit a plurality of RF service downlink beams, thereby eliminating any need for the other satellite to perform any frequency conversions when producing the plurality of RF service downlink beams in dependence on the optical ISL beam.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: October 1, 2019
    Assignee: Space Systems/Loral, LLC
    Inventors: Ghislain Turgeon, Vijaya Gallagher
  • Patent number: 10320481
    Abstract: Described herein are ground based subsystems, and related methods, for use in transmitting an optical feeder uplink beam to a satellite that is configured to receive the optical feeder uplink beam and in dependence thereon produce and transmit a plurality of RF service downlink beams within a specified RF frequency range to service terminals. Certain embodiments are related to a resource allocator for inclusion in a ground based subsystem, and methods for use therewith. Beneficially, the resource allocator, and methods for use therewith, eliminate any need for a satellite to perform any bandwidth allocation for the plurality of service downlink beams produced and transmitted by the satellite, thereby eliminating any need for the satellite to include an on-board channelizer. Such a recourse allocator can include a plurality of channels each of which can include an encoder and modulator, a channel filter, and a frequency up-converter.
    Type: Grant
    Filed: June 26, 2017
    Date of Patent: June 11, 2019
    Assignee: Space Systems/Loral, LLC
    Inventors: Leah Wang, Vijaya Gallagher, Ghislain Turgeon
  • Patent number: 10250330
    Abstract: A photonic switch device accepts a data modulated RF signal and outputs the data modulated RF signal or a frequency converted version thereof at one or more outputs of the switch device. Tunable laser(s) is/are controlled to cause peak wavelength(s) of the optical signal(s) emitted therefrom. An EOM receives the accepted data modulated RF signal and optical signal(s) produced using the tunable laser(s), and the EOM outputs an optical data signal modulated to include the data modulated RF signal. A WDM receives the optical data signal output by the EOM and the optical data signal received by the WDM demultiplexer is output at one or more outputs thereof based on peak wavelength(s) of the optical data signal. Photodetectors optically coupled to respective outputs of the WDM demultiplexer convert optical signals back to electrical signals. Related methods and system are also described herein.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: April 2, 2019
    Assignee: Space Systems/Loral LLC
    Inventors: Silvia M. Delgado Cabello, Vijaya Gallagher, Ghislain Turgeon
  • Patent number: 10142021
    Abstract: Described herein are ground based subsystems, and related methods, for use in transmitting an optical feeder uplink beam to a satellite that includes a multiple element antenna feed array and that is configured to accept the optical feeder uplink beam and in dependence thereon use the multiple element antenna feed array to produce and transmit a plurality of radio frequency (RF) service downlink beams to service terminals. Certain embodiments are related to a ground based beamformer (GBBF) for inclusion in a ground based subsystem, and methods for use therewith. Beneficially, embodiments described herein allow for flexible antenna beam forming for large signal bandwidth without the limitation associated with the available gateway uplink and downlink spectrum at RF frequencies. Also described herein are space based subsystems for use with such ground based subsystems.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: November 27, 2018
    Assignee: SPACE SYSTEMS/LORAL, LLC
    Inventors: Ghislain Turgeon, Vijaya Gallagher, Leah Wang
  • Patent number: 10075242
    Abstract: Described herein are ground based subsystems, and related methods, for use in transmitting an optical feeder uplink beam to a satellite that is configured to receive the optical feeder uplink beam and in dependence thereon produce and transmit a plurality of RF service downlink beams within a specified RF frequency range to service terminals. Also described herein are space based subsystems of a satellite, and related methods, for use in transmitting a plurality of RF service downlink beams within a specified RF frequency range to service terminals. Beneficially certain embodiments eliminate the need for any frequency down-converters or any other type of frequency conversion equipment in a space segment forward link equipment. Also described herein is space segment return link equipment, and related methods, for use in transmitting an optical feeder downlink beam to a ground based subsystem, as well as ground based return link equipment thereof.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: September 11, 2018
    Assignee: SPACE SYSTEMS/LORAL, LLC
    Inventors: Ghislain Turgeon, Vijaya Gallagher, Leah Wang
  • Patent number: 10069565
    Abstract: Described herein are ground based subsystems, and related methods, for use in transmitting an optical feeder uplink beam to a satellite that is configured to receive the optical feeder uplink beam and in dependence thereon produce and transmit a plurality of RF service downlink beams within a specified RF frequency range to service terminals. Also described herein are space based subsystems of a satellite, and related methods, for use in transmitting a plurality of RF service downlink beams within a specified RF frequency range to service terminals. Beneficially certain embodiments eliminate the satellite to perform any RF frequency conversions upstream of a channelizer of the space based forward link subsystem on the satellite. Also described herein is space segment return link equipment, and related methods, for use in transmitting an optical feeder downlink beam to a ground based subsystem, as well as ground based return link equipment thereof.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: September 4, 2018
    Assignee: SPACE SYSTEMS/LORAL, LLC
    Inventors: Vijaya Gallagher, Ghislain Turgeon
  • Patent number: 10050699
    Abstract: Described herein is a space based subsystem of a satellite, and methods for use therewith, for receiving an optical ISL beam from another satellite, and in dependence therein, producing a further optical ISL beam for transmission to a further satellite. Additionally, the subsystem can also produce RF service downlink beams for transmission to service terminals. The subsystem can include, inter alia, receiver optics, optical amplifiers, a WDM demultiplexer, beam splitters, a WDM multiplexer, and transmitter optics. In certain embodiments, because RF frequencies of a wavelength division multiplexed optical signal produced by the WDM multiplexer are within a same specified RF frequency range within which the satellite and the further satellite are configured to transmit RF service downlink beams, there is an elimination of any need for the satellite and further satellite to perform any frequency conversions when producing the RF service downlink beams in dependence on the optical ISL beams.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: August 14, 2018
    Assignee: SPACE SYSTEMS/LORAL, LLC
    Inventors: William Hreha, Ghislain Turgeon, Vijaya Gallagher
  • Patent number: 9979465
    Abstract: Described herein is a space based subsystem of a satellite, and methods for use therewith, for producing and transmitting an optical ISL beam to another satellite. The subsystem can include, inter alia, receiver optics, optical amplifiers, a WDM demultiplexer, beam splitters, a WDM multiplexer, and transmitter optics. The transmitter optics may be configured to receive an amplified wavelength division multiplexed optical signal and, in dependence thereon, transmit an optical ISL beam to another satellite. In certain embodiments, because RF frequencies of a wavelength division multiplexed optical signal produced by the WDM multiplexer are within a same specified RF frequency range within which the other satellite is configured to transmit RF service downlink beams, there is an elimination of any need for the other satellite to perform any frequency conversions when producing the RF service downlink beams in dependence on the optical ISL beam.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: May 22, 2018
    Assignee: SPACE SYSTEMS/LORAL, LLC
    Inventors: William Hreha, Ghislain Turgeon, Vijaya Gallagher
  • Patent number: 9923625
    Abstract: Described herein is a space based subsystem of a satellite, and methods for use therewith, for receiving an RF uplink feeder beam and in dependence thereon producing one or more optical ISL beams for transmission to one or more other satellites. The subsystem can include an antenna to receive an RF feeder uplink beam and produce an RF signal therefrom. The subsystem can also include, inter alia, RF components, local oscillator(s), lasers, EOMs, a WDM multiplexer, an optical amplifier and transmitter optics. Such components can be used to convert the RF signal to one or more ISL beams for transmission to one or more other satellites. Where RF frequencies of optical data signals output by the EOMs are within the same RF frequency range within which the other satellite(s) transmit RF service downlink beams, there is an elimination of any need for the other satellite(s) to perform frequency conversions.
    Type: Grant
    Filed: March 16, 2017
    Date of Patent: March 20, 2018
    Assignee: SPACE SYSTEMS/LORAL, LLC
    Inventors: William Hreha, Ghislain Turgeon, Vijaya Gallagher
  • Patent number: 9917646
    Abstract: Described herein are space based subsystems of a satellite, and related methods, for use in producing an optical feeder downlink beam in dependence on RF service uplink beams received from service terminals within a specified RF frequency range. Beneficially certain embodiments eliminate the need for any type of frequency conversion equipment in the spaced based subsystem that is used to produce the optical feeder downlink beam. Also described herein are ground based subsystems, and related methods, for use in transmitting an optical feeder uplink beam to a satellite configured to receive the optical feeder uplink beam and in dependence thereon produce and transmit a plurality of RF service downlink beams within a specified RF frequency range to service terminals. Also described herein is are space based subsystems of a satellite, and related methods, for use in transmitting a plurality of RF service downlink beams to service terminals.
    Type: Grant
    Filed: December 29, 2016
    Date of Patent: March 13, 2018
    Assignee: SPACE SYSTEMS/LORAL, LLC
    Inventors: Ghislain Turgeon, Vijaya Gallagher, Leah Wang
  • Publication number: 20180069629
    Abstract: Described herein are ground based subsystems, and related methods, for use in transmitting an optical feeder uplink beam to a satellite that includes a multiple element antenna feed array and that is configured to accept the optical feeder uplink beam and in dependence thereon use the multiple element antenna feed array to produce and transmit a plurality of radio frequency (RF) service downlink beams to service terminals. Certain embodiments are related to a ground based beamformer (GBBF) for inclusion in a ground based subsystem, and methods for use therewith. Beneficially, embodiments described herein allow for flexible antenna beam forming for large signal bandwidth without the limitation associated with the available gateway uplink and downlink spectrum at RF frequencies. Also described herein are space based subsystems for use with such ground based subsystems.
    Type: Application
    Filed: August 22, 2017
    Publication date: March 8, 2018
    Applicant: SPACE SYSTEMS/LORAL, LLC
    Inventors: Ghislain Turgeon, Vijaya Gallagher, Leah Wang
  • Publication number: 20180041275
    Abstract: Described herein are ground based subsystems, and related methods, for use in transmitting an optical feeder uplink beam to a satellite that is configured to receive the optical feeder uplink beam and in dependence thereon produce and transmit a plurality of RF service downlink beams within a specified RF frequency range to service terminals. Also described herein are space based subsystems of a satellite, and related methods, for use in transmitting a plurality of RF service downlink beams within a specified RF frequency range to service terminals. Beneficially certain embodiments eliminate the satellite to perform any RF frequency conversions upstream of a channelizer of the space based forward link subsystem on the satellite. Also described herein is space segment return link equipment, and related methods, for use in transmitting an optical feeder downlink beam to a ground based subsystem, as well as ground based return link equipment thereof.
    Type: Application
    Filed: May 19, 2017
    Publication date: February 8, 2018
    Applicant: Space Systems/Loral, LLC
    Inventors: Vijaya Gallagher, Ghislain Turgeon
  • Publication number: 20180019809
    Abstract: Described herein is a space based subsystem of a satellite, and methods for use therewith, for receiving an RF uplink feeder beam and in dependence thereon producing one or more optical ISL beams for transmission to one or more other satellites. The subsystem can include an antenna to receive an RF feeder uplink beam and produce an RF signal therefrom. The subsystem can also include, inter alia, RF components, local oscillator(s), lasers, EOMs, a WDM multiplexer, an optical amplifier and transmitter optics. Such components can be used to convert the RF signal to one or more ISL beams for transmission to one or more other satellites. Where RF frequencies of optical data signals output by the EOMs are within the same RF frequency range within which the other satellite(s) transmit RF service downlink beams, there is an elimination of any need for the other satellite(s) to perform frequency conversions.
    Type: Application
    Filed: March 16, 2017
    Publication date: January 18, 2018
    Applicant: Space Systems/Loral, LLC
    Inventors: William Hreha, Ghislain Turgeon, Vijaya Gallagher
  • Publication number: 20180019808
    Abstract: Described herein is a space based subsystem of a satellite, and methods for use therewith, for receiving an optical ISL beam from another satellite, and in dependence therein, producing a further optical ISL beam for transmission to a further satellite. Additionally, the subsystem can also produce RF service downlink beams for transmission to service terminals. The subsystem can include, inter alia, receiver optics, optical amplifiers, a WDM demultiplexer, beam splitters, a WDM multiplexer, and transmitter optics. In certain embodiments, because RF frequencies of a wavelength division multiplexed optical signal produced by the WDM multiplexer are within a same specified RF frequency range within which the satellite and the further satellite are configured to transmit RF service downlink beams, there is an elimination of any need for the satellite and further satellite to perform any frequency conversions when producing the RF service downlink beams in dependence on the optical ISL beams.
    Type: Application
    Filed: March 16, 2017
    Publication date: January 18, 2018
    Applicant: Space Systems/Loral, LLC
    Inventors: William Hreha, Ghislain Turgeon, Vijaya Gallagher