Patents by Inventor Gholam Reza Zakeri

Gholam Reza Zakeri has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10024587
    Abstract: An evaporator heat exchanger unit for a heating cooling module for a motor vehicle is disclosed. In one aspect, the evaporator heat exchanger unit includes at least one collector expansion tank for collecting a refrigerant and one evaporator, by which at least a part of the refrigerant can be converted into gaseous form. The evaporator heat exchanger unit also includes a housing enclosing an inner chamber, wherein in the inner chamber, the collector expansion tank, the evaporator, and a cooling medium are arranged, and wherein an expansion organ is arranged on the housing, by which the refrigerant is supplied to the evaporator.
    Type: Grant
    Filed: February 27, 2014
    Date of Patent: July 17, 2018
    Assignee: MAGNA POWERTRAIN BAD HOMBURG GMBH
    Inventors: Tilo Schaefer, Gholam Reza Zakeri
  • Patent number: 9551516
    Abstract: The invention relates to a compressor-heat exchanger unit for a heating-cooling module for a motor vehicle, in which at least one fluid serving as a coolant flows, comprising a compressor device for compressing the first fluid, at least one heat exchanger device that has at least one first circuit for the first fluid to flow through and a second circuit for a second fluid to flow through, this heat exchanger unit being arranged in the fluid stream after the compressor device, characterized in that the first fluid is guided at least partially in flow channels of the first circuit that at least partially enclose the compressor device.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: January 24, 2017
    Assignee: Magna Powertrain Bad Homburg GmbH
    Inventors: Uwe Becker, Jens Dittmar, Tilo Schaefer, Gholam Reza Zakeri
  • Publication number: 20150013353
    Abstract: The invention relates to a compressor-heat exchanger unit for a heating-cooling module for a motor vehicle, in which at least one fluid serving as a coolant flows, comprising a compressor device for compressing the first fluid, at least one heat exchanger device that has at least one first circuit for the first fluid to flow through and a second circuit for a second fluid to flow through, this heat exchanger unit being arranged in the fluid stream after the compressor device, characterised in that the first fluid is guided at least partially in flow channels of the first circuit that at least partially enclose the compressor device.
    Type: Application
    Filed: January 10, 2013
    Publication date: January 15, 2015
    Inventors: Uwe Becker, Jens Dittmar, Tilo Schaefer, Gholam Reza Zakeri
  • Publication number: 20140174120
    Abstract: An evaporator heat exchanger unit for a heating cooling module for a motor vehicle is disclosed. In one aspect, the evaporator heat exchanger unit includes at least one collector expansion tank for collecting a refrigerant and one evaporator, by which at least a part of the refrigerant can be converted into gaseous form. The evaporator heat exchanger unit also includes a housing enclosing an inner chamber, wherein in the inner chamber, the collector expansion tank, the evaporator, and a cooling medium are arranged, and wherein an expansion organ is arranged on the housing, by which the refrigerant is supplied to the evaporator.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Applicant: Magna Powertrain Bad Homburg GmbH
    Inventors: Tilo Schaefer, Gholam Reza Zakeri
  • Patent number: 7185506
    Abstract: Reversible vapor compression system including a compressor (1), an interior heat exchanger (2), an expansion device (6) and an exterior heat exchanger (3) connected by means of conduits in an operable relationship to form an integral main circuit. A first device is provided in the main circuit between the compressor and the interior heat exchanger, and a second device is provided on the opposite side of the main circuit between the interior and exterior heat exchangers to enable reversing of the system from cooling mode to heating mode and vice versa. The first and second device for reversing of the system include a first and second sub-circuit (A respectively B) each of which is connected with the main circuit through a flow reversing device (4 and 5 respectively). Included in the system solution is a reversible heat exchanger for refrigerant fluid, particularly carbon dioxide. It includes a number of interconnected sections arranged with air flow sequentially through the sections.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: March 6, 2007
    Assignee: Sinvent AS
    Inventors: Kåre Aflekt, Einar Brendeng, Armin Hafner, Petter Nekså, Jostein Pettersen, Håvard Rekstad, Geir Skaugen, Gholam Reza Zakeri
  • Patent number: 7131291
    Abstract: A compression refrigeration system includes a compressor (1), a heat rejector (2), expansion device (3) and a heat absorber (4) connected in a closed circulation circuit that may operate with supercritical high-side pressure. The refrigerant charge and component design of the system corresponds to a stand still pressure inside the system which lower than 1.26 times the critical pressure of the refrigerant when the temperature of the whole system is equalized to 60° C. Carbon dioxide or a mixture of a refrigerant containing carbon dioxide may be applied as the refrigerant in the system.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: November 7, 2006
    Assignee: Sinvent AS
    Inventors: Kåre Aflekt, Arne Jakobsen, Jostein Pettersen, Geir Skaugen, Armin Hafner, Petter Nekså, Håvard Rekstad, Gholam Reza Zakeri
  • Patent number: 6931880
    Abstract: A method of defrosting of a heat exchanger (evaporator) in a vapor compression system including, downstream of a heat exchanger (evaporator) (3) to be defrosted, at least a compressor (1), a second heat exchanger (condenser/heat rejecter) (2), and an expansion device (6) connected by conduits in an operable manner to form an integral closed circuit. The heat exchanger (3) to be defrosted is subjected to essentially the same pressure as the compressor's (1) discharge pressure. Thus, the heat exchanger (3) is defrosted as the high-pressure discharge gas from the compressor (1) flows through to the heat exchanger, giving off heat to the heat exchanger (3). In the circuit, in connection with the expansion device (6) a first bypass loop 23 with a first valve (16?), is provided.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: August 23, 2005
    Assignee: Sinvent AS
    Inventors: Kåre Aflekt, Einar Brendeng, Armin Hafner, Petter Nekså, Jostein Pettersen, Håvard Rekstad, Geir Skaugen, Gholam Reza Zakeri
  • Publication number: 20040103681
    Abstract: Method for defrosting of a heat exchanger (evaporator) in a vapor compression system including, beyond a heat exchanger (evaporator) (3) to be defrosted, at least a compressor (1), a second heat exchanger (condenser/heat rejecter) (2) and an expansion device (6) connected by conduits in an operable manner to form an integral closed circuit. The heat exchanger (3) to be defrosted is subjected to essentially the same pressure as the compressor's (1) discharge pressure whereby the heat exchanger (3) is defrosted as the high-pressure discharge gas from the compressor (1) flows through to the heat exchanger, giving off heat to the said heat exchanger (3).
    Type: Application
    Filed: July 21, 2003
    Publication date: June 3, 2004
    Inventors: Kare Aflekt, Einar Brendeng, Armin Hafner, Petter Neksa, Jostein Pettersen, Havard Rekstad, Geir Skaugen, Gholam Reza Zakeri
  • Publication number: 20040025526
    Abstract: Reversible vapor compression system including a compressor (1), an interior heat exchanger (2), an expansion device (6) and an exterior heat exchanger (3) connected by means of conduits in an operable relationship to form an integral main circuit. A first means is provided in the main circuit between the compressor and the interior heat exchanger, and a second means is provided on the opposite side of the main circuit between the interior and exterior heat exchangers to enable reversing of the system from cooling mode to heating mode and vice versa. The first and second means for reversing of the system include a first and second sub-circuit (A respectively B) each of which is connected with the main circuit through a flow reversing device (4 and 5 respectively) Included in the system solution is a reversible heat exchanger for refrigerant fluid, particularly carbon dioxide. It includes a number of interconnected sections arranged with air flow sequentially through the sections.
    Type: Application
    Filed: August 18, 2003
    Publication date: February 12, 2004
    Inventors: Kare Aflekt, Einar Brendeng, Armin Hafner, Petter Neksa, Jostein Pettersen, Havard Rekstad, Geir Skaugen, Gholam Reza Zakeri