Patents by Inventor Ghyrn E. Loveness

Ghyrn E. Loveness has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9231243
    Abstract: Provided are electrode layers for use in rechargeable batteries, such as lithium ion batteries, and related fabrication techniques. These electrode layers have interconnected hollow nanostructures that contain high capacity electrochemically active materials, such as silicon, tin, and germanium. In certain embodiments, a fabrication technique involves forming a nanoscale coating around multiple template structures and at least partially removing and/or shrinking these structures to form hollow cavities. These cavities provide space for the active materials of the nanostructures to swell into during battery cycling. This design helps to reduce the risk of pulverization and to maintain electrical contacts among the nanostructures. It also provides a very high surface area available ionic communication with the electrolyte. The nanostructures have nanoscale shells but may be substantially larger in other dimensions.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: January 5, 2016
    Assignee: Amprius, Inc.
    Inventors: Yi Cui, Song Han, Ghyrn E. Loveness
  • Patent number: 9209456
    Abstract: Provided are novel electrode material composite structures containing high capacity active materials formed into porous base structures. The structures also include shells that encapsulate these porous base structures. During lithiation of the active material, the shell mechanically constrains the porous base structure. The shell allows lithium ions to pass through but prevents electrolyte solvents from interacting with the encapsulated active material. In certain embodiments, the shell contains carbon, while the porous base structure contains silicon. Although silicon tends to swell during lithiation, the porosity of the base structure and/or void spaces inside the shell helps to accommodate this additional volume within the shell without breaking it or substantially increasing the overall size of the composite structure.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: December 8, 2015
    Assignee: Amprius, Inc.
    Inventors: Rainer J. Fasching, Zuqin Liu, Song Han, Ghyrn E. Loveness, Constantin I. Stefan
  • Patent number: 9172094
    Abstract: Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: October 27, 2015
    Assignee: Amprius, Inc.
    Inventors: Ghyrn E. Loveness, William S. DelHagen, Rainer Fasching, Song Han, Zuqin Liu
  • Patent number: 9172088
    Abstract: Provided are novel multidimensional electrode structures containing high capacity active materials for use in rechargeable electrochemical cells. These structures include main support structures and multiple nanowires attached to the support structures and extending into different directions away from these supports. The active material may be deposited as a layer (uniform or non-uniform) surrounding the nanowires and, in certain embodiments, the main supports and even substrate. The active material layer may be sufficiently thin to prevent pulverization of the layer at given operating conditions. Interconnections between the electrode structures and/or substrate may be provided by overlaps formed during deposition of the active layer. Silicide-based nano wires structures may be formed on the main supports in a fluidized bed reactor by suspending the metal-containing main supports in a silicon-containing process gas. A layer of silicon may be then deposited over these silicide nanowires.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: October 27, 2015
    Assignee: Amprius, Inc.
    Inventors: Ghyrn E. Loveness, Constantin I. Stefan, Song Han
  • Publication number: 20140370380
    Abstract: Provided are nanostructures containing electrochemically active materials, battery electrodes containing these nanostructures for use in electrochemical batteries, such as lithium ion batteries, and methods of forming the nanostructures and battery electrodes. The nanostructures include conductive cores, inner shells containing active materials, and outer shells partially coating the inner shells. The high capacity active materials having a stable capacity of at least about 1000 mAh/g can be used. Some examples include silicon, tin, and/or germanium. The outer shells may be configured to substantially prevent formation of Solid Electrolyte lnterphase (SEI) layers directly on the inner shells. The conductive cores and/or outer shells may include carbon containing materials. The nanostructures are used to form battery electrodes, in which the nanostructures that are in electronic communication with conductive substrates of the electrodes.
    Type: Application
    Filed: May 25, 2010
    Publication date: December 18, 2014
    Inventors: Yi Cui, Song Han, Ghyrn E. Loveness
  • Publication number: 20140302232
    Abstract: Apparatuses and methods for depositing materials on both side of a web while it passes a substantially vertical direction are provided. In particular embodiments, a web does not contact any hardware components during the deposition. A web may be supported before and after the deposition chamber but not inside the deposition chamber. At such support points, the web may be exposed to different conditions (e.g., temperature) than during the deposition.
    Type: Application
    Filed: April 14, 2014
    Publication date: October 9, 2014
    Applicant: Amprius,Inc.
    Inventors: Ronald J. Mosso, Ghyrn E. Loveness
  • Publication number: 20140234715
    Abstract: Battery systems using coated conversion materials as the active material in battery cathodes are provided herein. Protective coatings may be an oxide, phosphate, or fluoride, and may be lithiated. The coating may selectively isolate the conversion material from the electrolyte. Methods for fabricating batteries and battery systems with coated conversion material are also provided herein.
    Type: Application
    Filed: May 8, 2014
    Publication date: August 21, 2014
    Applicant: QuantumScape Corporation
    Inventors: Rainer Fasching, Joseph Han, Jon Shan, Ghyrn E. Loveness, Eric Tulsky, Timothy Holme
  • Patent number: 8637185
    Abstract: Provided are conductive substrates having open structures and fractional void volumes of at least about 25% or, more specifically, or at least about 50% for use in lithium ion batteries. Nanostructured active materials are deposited over such substrates to form battery electrodes. The fractional void volume may help to accommodate swelling of some active materials during cycling. In certain embodiments, overall outer dimensions of the electrode remain substantially the same during cycling, while internal open spaces of the conductive substrate provide space for any volumetric changes in the nanostructured active materials. In specific embodiments, a nanoscale layer of silicon is deposited over a metallic mesh to form a negative electrode. In another embodiment, a conductive substrate is a perforated sheet with multiple openings, such that a nanostructured active material is deposited into the openings but not on the external surfaces of the sheet.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: January 28, 2014
    Assignee: Amprius, Inc.
    Inventors: Eugene M. Berdichevsky, Song Han, Yi Cui, Rainer J. Fasching, Ghyrn E. Loveness, William S. DelHagen, Mark C. Platshon
  • Publication number: 20130344383
    Abstract: Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
    Type: Application
    Filed: June 10, 2013
    Publication date: December 26, 2013
    Applicant: Amprius, Inc.
    Inventors: Ghyrn E. Loveness, William S. DelHagen, Rainer Fasching, Song Han, Zuqin Liu
  • Publication number: 20130320582
    Abstract: Provided are electrode layers for use in rechargeable batteries, such as lithium ion batteries, and related fabrication techniques. These electrode layers have interconnected hollow nanostructures that contain high capacity electrochemically active materials, such as silicon, tin, and germanium. In certain embodiments, a fabrication technique involves forming a nanoscale coating around multiple template structures and at least partially removing and/or shrinking these structures to form hollow cavities. These cavities provide space for the active materials of the nanostructures to swell into during battery cycling. This design helps to reduce the risk of pulverization and to maintain electrical contacts among the nanostructures. It also provides a very high surface area available ionic communication with the electrolyte. The nanostructures have nanoscale shells but may be substantially larger in other dimensions.
    Type: Application
    Filed: May 9, 2013
    Publication date: December 5, 2013
    Applicant: Amprius, Inc.
    Inventors: Yi Cui, Song Han, Ghyrn E. Loveness
  • Patent number: 8556996
    Abstract: Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
    Type: Grant
    Filed: August 1, 2012
    Date of Patent: October 15, 2013
    Assignee: Amprius, Inc.
    Inventors: Ghyrn E. Loveness, William S. DelHagen, Rainer Fasching, Song Han, Zuqin Liu
  • Publication number: 20130147199
    Abstract: A series of helical Savonius turbine generators for use in the ocean, each turbine generator being an independent system, but all sharing a common mooring/bus-bar cable. An anchor connects one generator to the ocean floor, and a buoyancy device system buoys the turbines so that they can generate power from passing currents. The generators are coreless, and generate electrical or hydraulic power. The turbine blades rotate on bearings that are lubricated with ambient water. A control system separately tracks the power generation level of each turbine, and controls the buoyancy of the buoyancy device system.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 13, 2013
    Inventors: Thomas Zambrano, Tyler MacCready, Taras Kiceniuk, JR., Bart D. Hibbs, Ghyrn E. Loveness
  • Patent number: 8450012
    Abstract: Provided are electrode layers for use in rechargeable batteries, such as lithium ion batteries, and related fabrication techniques. These electrode layers have interconnected hollow nanostructures that contain high capacity electrochemically active materials, such as silicon, tin, and germanium. In certain embodiments, a fabrication technique involves forming a nanoscale coating around multiple template structures and at least partially removing and/or shrinking these structures to form hollow cavities. These cavities provide space for the active materials of the nanostructures to swell into during battery cycling. This design helps to reduce the risk of pulverization and to maintain electrical contacts among the nanostructures. It also provides a very high surface area available ionic communication with the electrolyte. The nanostructures have nanoscale shells but may be substantially larger in other dimensions.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: May 28, 2013
    Assignee: Amprius, Inc.
    Inventors: Yi Cui, Song Han, Ghyrn E. Loveness
  • Publication number: 20130011736
    Abstract: Provided herein are novel template electrode materials and structures for lithium ion cells. Related methods are also provided. According to various embodiments, an electrode can include a nanostructured template, an electrochemically active material layer coating the template, and a first intermediate layer between the nanostructured template and the electrochemically active material layer. In one arrangement, the nanostructured template includes silicide nanowires. The electrochemically active material may be any of silicon, tin, germanium, carbon, metal hydrides, silicides, phosphides, and nitrides. The first intermediate layer may facilitate adhesion between the nanostructured template and the electrochemically active material layer, electronic conductivity within the electrode, and/or stress relaxation between the nanostructured template and the electrochemically active material layer.
    Type: Application
    Filed: July 2, 2012
    Publication date: January 10, 2013
    Applicant: AMPRIUS INC.
    Inventors: Ghyrn E. Loveness, Song Han, Zuqin Liu
  • Publication number: 20120301789
    Abstract: Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
    Type: Application
    Filed: August 1, 2012
    Publication date: November 29, 2012
    Applicant: AMPRIUS, INC.
    Inventors: Ghyrn E. Loveness, William S. DelHagen, Rainer Fasching, Song Han, Zuqin Liu
  • Patent number: 8257866
    Abstract: Provided are examples of electrochemically active electrode materials, electrodes using such materials, and methods of manufacturing such electrodes. Electrochemically active electrode materials may include a high surface area template containing a metal silicide and a layer of high capacity active material deposited over the template. The template may serve as a mechanical support for the active material and/or an electrical conductor between the active material and, for example, a substrate. Due to the high surface area of the template, even a thin layer of the active material can provide sufficient active material loading and corresponding battery capacity. As such, a thickness of the layer may be maintained below the fracture threshold of the active material used and preserve its structural integrity during battery cycling.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: September 4, 2012
    Assignee: Amprius, Inc.
    Inventors: Ghyrn E. Loveness, William S. DelHagen, Rainer Fasching, Song Han, Zuqin Liu
  • Publication number: 20120100438
    Abstract: Provided are novel electrode material composite structures containing high capacity active materials formed into porous base structures. The structures also include shells that encapsulate these porous base structures. During lithiation of the active material, the shell mechanically constrains the porous base structure. The shell allows lithium ions to pass through but prevents electrolyte solvents from interacting with the encapsulated active material. In certain embodiments, the shell contains carbon, while the porous base structure contains silicon. Although silicon tends to swell during lithiation, the porosity of the base structure and/or void spaces inside the shell helps to accommodate this additional volume within the shell without breaking it or substantially increasing the overall size of the composite structure.
    Type: Application
    Filed: October 20, 2011
    Publication date: April 26, 2012
    Applicant: AMPRIUS, INC.
    Inventors: Rainer J. Fasching, Zuqin Liu, Song Han, Ghyrn E. Loveness, Constantin I. Stefan
  • Publication number: 20120070741
    Abstract: Provided are battery electrode structures that maintain high mass loadings (i.e., large amounts per unit area) of high capacity active materials in the electrodes without deteriorating their cycling performance. These mass loading levels correspond to capacities per electrode unit area that are suitable for commercial electrodes even though the active materials are kept thin and generally below their fracture limits. A battery electrode structure may include multiple template layers. An initial template layer may include nanostructures attached to a substrate and have a controlled density. This initial layer may be formed using a controlled thickness source material layer provided, for example, on a substantially inert substrate. Additional one or more template layers are then formed over the initial layer resulting in a multilayer template structure with specific characteristics, such as a surface area, thickness, and porosity.
    Type: Application
    Filed: October 20, 2011
    Publication date: March 22, 2012
    Applicant: AMPRIUS, INC.
    Inventors: Zuqin Liu, Song Han, Ghyrn E. Loveness
  • Publication number: 20120045670
    Abstract: Provided are novel electrochemical cells that include positive electrodes, negative electrodes containing high capacity active materials such as silicon, and auxiliary electrodes containing lithium. An auxiliary electrode is provided in the cell at least prior to its formation cycling and is used to supply lithium to the negative electrode. The auxiliary electrode may be then removed from the cell prior or after formation. The transfer of lithium to the negative electrode may be performed using a different electrolyte, a higher temperature, and/or a slower rate than during later operational cycling of the cell. After this transfer, the negative electrode may remain pre-lithiated during later cycling at least at a certain predetermined level. This pre-lithiation helps to cycle the cell at more optimal conditions and to some degree maintain this cycling performance over the operating life of the cell. Also provided are methods of fabricating such cells.
    Type: Application
    Filed: September 26, 2011
    Publication date: February 23, 2012
    Applicant: AMPRIUS, INC.
    Inventors: Constantin I. Stefan, Rainer J. Fasching, Gregory Alan Roberts, Ryan Kottenstette, Song Han, Ghyrn E. Loveness
  • Publication number: 20110287318
    Abstract: Provided are novel multidimensional electrode structures containing high capacity active materials for use in rechargeable electrochemical cells. These structures include main support structures and multiple nanowires attached to the support structures and extending into different directions away from these supports. The active material may be deposited as a layer (uniform or non-uniform) surrounding the nanowires and, in certain embodiments, the main supports and even substrate. The active material layer may be sufficiently thin to prevent pulverization of the layer at given operating conditions. Interconnections between the electrode structures and/or substrate may be provided by overlaps formed during deposition of the active layer. Silicide-based nano wires structures may be formed on the main supports in a fluidized bed reactor by suspending the metal-containing main supports in a silicon-containing process gas. A layer of silicon may be then deposited over these silicide nanowires.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 24, 2011
    Applicant: AMPRIUS, INC.
    Inventors: Ghyrn E. Loveness, Constantin I. Stefan, Song Han