Patents by Inventor Gi-Dong Sim

Gi-Dong Sim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11851320
    Abstract: The present invention is directed to the synthesis of metallic nickel-molybdenum-tungsten films and coatings with direct current sputter deposition, which results in fully-dense crystallographically textured films that are filled with nano-scale faults and twins. The as-deposited films exhibit linear-elastic mechanical behavior and tensile strengths above 2.5 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultra-high strength is attributed to a combination of solid solution strengthening and the presence of the dense nano-scale faults and twins. These films also possess excellent thermal and mechanical stability, high density, low CTE, and electrical properties that are attractive for next generation metal MEMS applications. Deposited as coatings these films provide protection against friction and wear.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: December 26, 2023
    Assignee: The Johns Hopkins University
    Inventors: Gi-Dong Sim, Jessica Krogstad, Timothy P. Weihs, Kevin J. Hemker, Gianna Valentino
  • Publication number: 20200055725
    Abstract: The present invention is directed to the synthesis of metallic nickel-molybdenum-tungsten films and coatings with direct current sputter deposition, which results in fully-dense crystallographically textured films that are filled with nano-scale faults and twins. The as-deposited films exhibit linear-elastic mechanical behavior and tensile strengths above 2.5 GPa, which is unprecedented for materials that are compatible with wafer-level device fabrication processes. The ultra-high strength is attributed to a combination of solid solution strengthening and the presence of the dense nano-scale faults and twins. These films also possess excellent thermal and mechanical stability, high density, low CTE, and electrical properties that are attractive for next generation metal MEMS applications. Deposited as coatings these films provide protection against friction and wear.
    Type: Application
    Filed: May 1, 2018
    Publication date: February 20, 2020
    Inventors: Gi-Dong Sim, Jessica Krogstad, Timothy P. Weihs, Kevin J. Hemker, Gianna Valentino