Patents by Inventor Gi Tae LIM

Gi Tae LIM has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250087546
    Abstract: In one example, an electronic device includes a substrate, an electronic component disposed over the substrate, and an encapsulant disposed over the substrate and the electronic component. A molded heat spreader can be disposed over the encapsulant and can comprise a heat spreader and a mold compound disposed around a lateral side of the heat spreader. A lateral side of the mold compound is coplanar with a lateral side of the encapsulant. Other examples and related methods are also disclosed herein.
    Type: Application
    Filed: September 12, 2023
    Publication date: March 13, 2025
    Applicant: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Joon Dong Kim, Gi Tae Lim, Gi Jeong Kim, Min Hwa Chang, Gyu Wan Han, Hwi Won Yun
  • Publication number: 20250022784
    Abstract: A method of manufacturing a semiconductor device having a semiconductor die within an extended substrate and a bottom substrate may include bonding a bottom surface of a semiconductor die to a top surface of a bottom substrate, forming an adhering member to a top surface of the semiconductor die, bonding an extended substrate to the semiconductor die and to the top surface of the bottom substrate utilizing the adhering member and a conductive bump on a bottom surface of the extended substrate and a conductive bump on the bottom substrate. The semiconductor die and the conductive bumps may be encapsulated utilizing a mold member. The conductive bump on the bottom surface of the extended substrate may be electrically connected to a terminal on the top surface of the extended substrate. The adhering member may include a laminate film, a non-conductive film adhesive, or a thermal hardening liquid adhesive.
    Type: Application
    Filed: September 27, 2024
    Publication date: January 16, 2025
    Inventors: Jae Yun Kim, Gi Tae Lim, Woon Kab Jung, Ju Hoon Yoon, Dong Joo Park, Byong Woo Cho, Gyu Wan Han, Ji Young Chung, Jin Seong Kim, Do Hyun Na
  • Publication number: 20250014975
    Abstract: In one example, an electronic device can comprise a first substrate, an electronic component disposed over a side of the first substrate, and a vertical interconnect coupled to the side of the first substrate. The vertical interconnect can comprise a first metallic core ball proximate the first substrate, a second metallic core ball disposed above the first metallic core ball and distal from the first substrate, and a fusible material coupling the first metallic core ball with the second metallic core ball. The fusible material can be coupled to the first substrate. A second substrate can be disposed over the electronic component and the vertical interconnect. The fusible material of the vertical interconnect can be coupled to the second substrate. Other examples and related methods are also disclosed herein.
    Type: Application
    Filed: July 6, 2023
    Publication date: January 9, 2025
    Applicant: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Gi Tae Lim, Wook Choi, Seul Bee Lee
  • Publication number: 20240395725
    Abstract: In one example, an electronic device, comprises a first substrate comprising a first conductive structure, a second substrate comprising a second conductive structure, wherein the first substrate is over the second substrate, a first electronic component between the first substrate and the second substrate, a vertical interconnect between the first substrate and the second substrate, wherein the vertical interconnect is coupled with the first conductive structure and the second conductive structure, and an encapsulant between the first substrate and the second substrate and covering the vertical interconnect. A vertical port on the first electronic component is exposed by an aperture of the first substrate. Other examples and related methods are also disclosed herein.
    Type: Application
    Filed: May 28, 2024
    Publication date: November 28, 2024
    Applicant: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Myung Jea Choi, Gyu Wan Han, Gi Tae Lim, Dong Joo Park, Ji Hun Yi, Jin Young Khim
  • Patent number: 12107035
    Abstract: A method of manufacturing a semiconductor device having a semiconductor die within an extended substrate and a bottom substrate may include bonding a bottom surface of a semiconductor die to a top surface of a bottom substrate, forming an adhering member to a top surface of the semiconductor die, bonding an extended substrate to the semiconductor die and to the top surface of the bottom substrate utilizing the adhering member and a conductive bump on a bottom surface of the extended substrate and a conductive bump on the bottom substrate. The semiconductor die and the conductive bumps may be encapsulated utilizing a mold member. The conductive bump on the bottom surface of the extended substrate may be electrically connected to a terminal on the top surface of the extended substrate. The adhering member may include a laminate film, a non-conductive film adhesive, or a thermal hardening liquid adhesive.
    Type: Grant
    Filed: August 29, 2022
    Date of Patent: October 1, 2024
    Assignee: Amkor Technology Singapore Holdings Pte. Ltd.
    Inventors: Jae Yun Kim, Gi Tae Lim, Woon Kab Jung, Ju Hoon Yoon, Dong Joo Park, Byong Woo Cho, Gyu Wan Han, Ji Young Chung, Jin Seong Kim, Do Hyun Na
  • Publication number: 20240258182
    Abstract: In one example, a semiconductor device can comprise a substrate, a device stack, first and second internal interconnects, and an encapsulant. The substrate can comprise a first and second substrate sides opposite each other, a substrate outer sidewall between the first substrate side and the second substrate side, and a substrate inner sidewall defining a cavity between the first substrate side and the second substrate side. The device stack can be in the cavity and can comprise a first electronic device, and a second electronic device stacked on the first electronic device. The first internal interconnect can be coupled to the substrate and the device stack. The encapsulant can cover the substrate inner sidewall and the device stack and can fill the cavity. Other examples and related methods are disclosed herein.
    Type: Application
    Filed: April 12, 2024
    Publication date: August 1, 2024
    Applicant: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Gyu Wan Han, Won Bae Bang, Ju Hyung Lee, Min Hwa Chang, Dong Joo Park, Jin Young Khim, Jae Yun Kim, Se Hwan Hong, Seung Jae Yu, Shaun Bowers, Gi Tae Lim, Byoung Woo Cho, Myung Jea Choi, Seul Bee Lee, Sang Goo Kang, Kyung Rok Park
  • Patent number: 11996369
    Abstract: In one example, an electronic device, comprises a first substrate comprising a first conductive structure, a second substrate comprising a second conductive structure, wherein the first substrate is over the second substrate, a first electronic component between the first substrate and the second substrate, a vertical interconnect between the first substrate and the second substrate, wherein the vertical interconnect is coupled with the first conductive structure and the second conductive structure, and an encapsulant between the first substrate and the second substrate and covering the vertical interconnect. A vertical port on the first electronic component is exposed by an aperture of the first substrate. Other examples and related methods are also disclosed herein.
    Type: Grant
    Filed: October 25, 2022
    Date of Patent: May 28, 2024
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Myung Jea Choi, Gyu Wan Han, Gi Tae Lim, Dong Joo Park, Ji Hun Yi, Jin Young Khim
  • Patent number: 11961775
    Abstract: In one example, a semiconductor device can comprise a substrate, a device stack, first and second internal interconnects, and an encapsulant. The substrate can comprise a first and second substrate sides opposite each other, a substrate outer sidewall between the first substrate side and the second substrate side, and a substrate inner sidewall defining a cavity between the first substrate side and the second substrate side. The device stack can be in the cavity and can comprise a first electronic device, and a second electronic device stacked on the first electronic device. The first internal interconnect can be coupled to the substrate and the device stack. The encapsulant can cover the substrate inner sidewall and the device stack and can fill the cavity. Other examples and related methods are disclosed herein.
    Type: Grant
    Filed: November 8, 2022
    Date of Patent: April 16, 2024
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Gyu Wan Han, Won Bae Bang, Ju Hyung Lee, Min Hwa Chang, Dong Joo Park, Jin Young Khim, Jae Yun Kim, Se Hwan Hong, Seung Jae Yu, Shaun Bowers, Gi Tae Lim, Byoung Woo Cho, Myung Jea Choi, Seul Bee Lee, Sang Goo Kang, Kyung Rok Park
  • Patent number: 11749654
    Abstract: In one example, a semiconductor structure comprises a redistribution structure comprising a conductive structure, a cavity substrate on a top side of the redistribution structure and having a cavity and a pillar contacting the redistribution structure, an electronic component on the top surface of the redistribution structure and in the cavity, wherein the electronic component is electrically coupled with the conductive structure, and an encapsulant in the cavity and on the top side of the redistribution structure, contacting a lateral side of the electronic component, a lateral side of the cavity, and a lateral side of the pillar. Other examples and related methods are also disclosed herein.
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: September 5, 2023
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Gi Tae Lim, Jae Yun Kim, Myung Jea Choi
  • Publication number: 20230110213
    Abstract: In one example, an electronic device, comprises a first substrate comprising a first conductive structure, a second substrate comprising a second conductive structure, wherein the first substrate is over the second substrate, a first electronic component between the first substrate and the second substrate, a vertical interconnect between the first substrate and the second substrate, wherein the vertical interconnect is coupled with the first conductive structure and the second conductive structure, and an encapsulant between the first substrate and the second substrate and covering the vertical interconnect. A vertical port on the first electronic component is exposed by an aperture of the first substrate. Other examples and related methods are also disclosed herein.
    Type: Application
    Filed: October 25, 2022
    Publication date: April 13, 2023
    Applicant: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Myung Jea Choi, Gyu Wan Han, Gi Tae Lim, Dong Joo Park, Ji Hun Yi, Jin Young Khim
  • Publication number: 20230070922
    Abstract: In one example, a semiconductor device can comprise a substrate, a device stack, first and second internal interconnects, and an encapsulant. The substrate can comprise a first and second substrate sides opposite each other, a substrate outer sidewall between the first substrate side and the second substrate side, and a substrate inner sidewall defining a cavity between the first substrate side and the second substrate side. The device stack can be in the cavity and can comprise a first electronic device, and a second electronic device stacked on the first electronic device. The first internal interconnect can be coupled to the substrate and the device stack. The encapsulant can cover the substrate inner sidewall and the device stack and can fill the cavity. Other examples and related methods are disclosed herein.
    Type: Application
    Filed: November 8, 2022
    Publication date: March 9, 2023
    Applicant: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Gyu Wan Han, Won Bae Bang, Ju Hyung Lee, Min Hwa Chang, Dong Joo Park, Jin Young Khim, Jae Yun Kim, Se Hwan Hong, Seung Jae Yu, Shaun Bowers, Gi Tae Lim, Byoung Woo Cho, Myung Jea Choi, Seul Bee Lee, Sang Goo Kang, Kyung Rok Park
  • Publication number: 20220415769
    Abstract: A method of manufacturing a semiconductor device having a semiconductor die within an extended substrate and a bottom substrate may include bonding a bottom surface of a semiconductor die to a top surface of a bottom substrate, forming an adhering member to a top surface of the semiconductor die, bonding an extended substrate to the semiconductor die and to the top surface of the bottom substrate utilizing the adhering member and a conductive bump on a bottom surface of the extended substrate and a conductive bump on the bottom substrate. The semiconductor die and the conductive bumps may be encapsulated utilizing a mold member. The conductive bump on the bottom surface of the extended substrate may be electrically connected to a terminal on the top surface of the extended substrate. The adhering member may include a laminate film, a non-conductive film adhesive, or a thermal hardening liquid adhesive.
    Type: Application
    Filed: August 29, 2022
    Publication date: December 29, 2022
    Inventors: Jae Yun Kim, Gi Tae Lim, Woon Kab Jung, Ju Hoon Yoon, Dong Joo Park, Byong Woo Cho, Gyu Wan Han, Ji Young Chung, Jin Seong Kim, Do Hyun Na
  • Patent number: 11495505
    Abstract: In one example, a semiconductor device can comprise a substrate, a device stack, first and second internal interconnects, and an encapsulant. The substrate can comprise a first and second substrate sides opposite each other, a substrate outer sidewall between the first substrate side and the second substrate side, and a substrate inner sidewall defining a cavity between the first substrate side and the second substrate side. The device stack can be in the cavity and can comprise a first electronic device, and a second electronic device stacked on the first electronic device. The first internal interconnect can be coupled to the substrate and the device stack. The encapsulant can cover the substrate inner sidewall and the device stack and can fill the cavity. Other examples and related methods are disclosed herein.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: November 8, 2022
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Gyu Wan Han, Won Bae Bang, Ju Hyung Lee, Min Hwa Chang, Dong Joo Park, Jin Young Khim, Jae Yun Kim, Se Hwan Hong, Seung Jae Yu, Shaun Bowers, Gi Tae Lim, Byoung Woo Cho, Myung Jea Choi, Seul Bee Lee, Sang Goo Kang, Kyung Rok Park
  • Publication number: 20220352129
    Abstract: In one example, a semiconductor structure comprises a frontside substrate comprising a conductive structure, a backside substrate comprising a base substrate and a cavity substrate contacting the base substrate, wherein the backside substrate is over a top side of the frontside substrate and has a cavity and an internal interconnect contacting the frontside substrate, and a first electronic component over the top side of the frontside substrate and in the cavity. The first electronic component is coupled with the conductive structure, and an encapsulant is in the cavity and on the top side of the frontside substrate, contacting a lateral side of the first electronic component, a lateral side of the cavity, and a lateral side of the internal interconnect. Other examples and related methods are also disclosed herein.
    Type: Application
    Filed: July 14, 2022
    Publication date: November 3, 2022
    Applicant: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Gi Tae Lim, Jae Yun Kim, Myung Jae Choi, Min Hwa Chang, Mi Kyoung Choi
  • Patent number: 11482496
    Abstract: In one example, an electronic device, comprises a first substrate comprising a first conductive structure, a second substrate comprising a second conductive structure, wherein the first substrate is over the second substrate, a first electronic component between the first substrate and the second substrate, a vertical interconnect between the first substrate and the second substrate, wherein the vertical interconnect is coupled with the first conductive structure and the second conductive structure, and an encapsulant between the first substrate and the second substrate and covering the vertical interconnect. A vertical port on the first electronic component is exposed by an aperture of the first substrate. Other examples and related methods are also disclosed herein.
    Type: Grant
    Filed: October 16, 2020
    Date of Patent: October 25, 2022
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Myung Jea Choi, Gyu Wan Han, Gi Tae Lim, Dong Joo Park, Ji Hun Yi, Jin Young Khim
  • Patent number: 11430723
    Abstract: A method of manufacturing a semiconductor device having a semiconductor die within an extended substrate and a bottom substrate may include bonding a bottom surface of a semiconductor die to a top surface of a bottom substrate, forming an adhering member to a top surface of the semiconductor die, bonding an extended substrate to the semiconductor die and to the top surface of the bottom substrate utilizing the adhering member and a conductive bump on a bottom surface of the extended substrate and a conductive bump on the bottom substrate. The semiconductor die and the conductive bumps may be encapsulated utilizing a mold member. The conductive bump on the bottom surface of the extended substrate may be electrically connected to a terminal on the top surface of the extended substrate. The adhering member may include a laminate film, a non-conductive film adhesive, or a thermal hardening liquid adhesive.
    Type: Grant
    Filed: October 1, 2018
    Date of Patent: August 30, 2022
    Assignee: AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD.
    Inventors: Jae Yun Kim, Gi Tae Lim, Woon Kab Jung, Ju Hoon Yoon, Dong Joo Park, Byong Woo Cho, Gyu Wan Han, Ji Young Chung, Jin Seong Kim, Do Hyun Na
  • Patent number: 11398455
    Abstract: In one example, a semiconductor device can comprise a substrate, a device stack, first and second internal interconnects, and an encapsulant. The substrate can comprise a first and second substrate sides opposite each other, a substrate outer sidewall between the first substrate side and the second substrate side, and a substrate inner sidewall defining a cavity between the first substrate side and the second substrate side. The device stack can be in the cavity and can comprise a first electronic device, and a second electronic device stacked on the first electronic device. The first internal interconnect can be coupled to the substrate and the device stack. The second internal interconnect can be coupled to the second electronic device and the first electronic device. The encapsulant can cover the substrate inner sidewall and the device stack, and can fill the cavity. Other examples and related methods are disclosed herein.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: July 26, 2022
    Assignee: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Gyu Wan Han, Won Bae Bang, Ju Hyung Lee, Min Hwa Chang, Dong Joo Park, Jin Young Khim, Jae Yun Kim, Se Hwan Hong, Seung Jae Yu, Shaun Bowers, Gi Tae Lim, Byoung Woo Cho, Myung Jea Choi, Seul Bee Lee
  • Publication number: 20220122921
    Abstract: In one example, an electronic device, comprises a first substrate comprising a first conductive structure, a second substrate comprising a second conductive structure, wherein the first substrate is over the second substrate, a first electronic component between the first substrate and the second substrate, a vertical interconnect between the first substrate and the second substrate, wherein the vertical interconnect is coupled with the first conductive structure and the second conductive structure, and an encapsulant between the first substrate and the second substrate and covering the vertical interconnect. A vertical port on the first electronic component is exposed by an aperture of the first substrate. Other examples and related methods are also disclosed herein.
    Type: Application
    Filed: October 16, 2020
    Publication date: April 21, 2022
    Applicant: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Myung Jea Choi, Gyu Wan Han, Gi Tae Lim, Dong Joo Park, Ji Hun Yi, Jin Young Khim
  • Publication number: 20220068897
    Abstract: In one example, a semiconductor structure comprises a redistribution structure comprising a conductive structure, a cavity substrate on a top side of the redistribution structure and having a cavity and a pillar contacting the redistribution structure, an electronic component on the top surface of the redistribution structure and in the cavity, wherein the electronic component is electrically coupled with the conductive structure, and an encapsulant in the cavity and on the top side of the redistribution structure, contacting a lateral side of the electronic component, a lateral side of the cavity, and a lateral side of the pillar. Other examples and related methods are also disclosed herein.
    Type: Application
    Filed: November 8, 2021
    Publication date: March 3, 2022
    Applicant: Amkor Technology Singapore Holding Pte. Ltd.
    Inventors: Gi Tae Lim, Jae Yun Kim, Myung Jae Choi
  • Patent number: 11171127
    Abstract: In one example, a semiconductor structure comprises a redistribution structure comprising a conductive structure, a cavity substrate on a top side of the redistribution structure and having a cavity and a pillar contacting the redistribution structure, an electronic component on the top surface of the redistribution structure and in the cavity, wherein the electronic component is electrically coupled with the conductive structure, and an encapsulant in the cavity and on the top side of the redistribution structure, contacting a lateral side of the electronic component, a lateral side of the cavity, and a lateral side of the pillar. Other examples and related methods are also disclosed herein.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: November 9, 2021
    Assignee: AMKOR TECHNOLOGY SINGAPORE HOLDING PTE. LTD.
    Inventors: Gi Tae Lim, Jae Yun Kim, Myung Jae Choi