Patents by Inventor Giacomo Seghi

Giacomo Seghi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130133868
    Abstract: Systems and methods include heat exchangers using Organic Rankine Cycle (ORC) fluids in power generation systems. A system for power generation using an ORC comprises: a heat exchanger configured to be mounted entirely inside a duct, the heat exchanger comprising a single inlet which traverses from an outer side of the duct to an inner side of the duct, a single outlet which traverses from the inner side of the duct to the outer side of the duct, and a conduit connecting the single inlet to the single outlet, the conduit being provided entirely inside the duct.
    Type: Application
    Filed: November 8, 2010
    Publication date: May 30, 2013
    Inventors: Matthew Alexander Lehar, Sebastian Walter Freund, Giulio De Simon, Giacomo Seghi
  • Patent number: 8240149
    Abstract: An ORC system configured to limit temperature of a working fluid below a threshold temperature is provided. The ORC system includes a heat source configured to convey a waste heat fluid. The ORC system also includes a heat exchanger coupled to the heat source. The heat exchanger includes an evaporator configured to receive the waste heat fluid from the heat source and vaporize the working fluid, wherein the evaporator is further configured to allow heat exchange between the waste heat fluid and the vaporized working fluid at an elevated temperature and further produce an evaporator outlet flow including a lower temperature waste heat fluid.
    Type: Grant
    Filed: May 6, 2009
    Date of Patent: August 14, 2012
    Assignee: General Electric Company
    Inventors: Matthew Alexander Lehar, Sebastian W. Freund, Giacomo Seghi
  • Publication number: 20120000200
    Abstract: In one embodiment, a system includes a valve system switchable between a waste heat recovery position configured to direct incoming exhaust gas through an interior volume of an exhaust section of an engine and a bypass position configured to direct the incoming exhaust gas through a bypass duct to bypass a heat recovery boiler disposed within the interior volume. The system also includes an inert gas purging system configured to inject an inert gas into the interior volume to displace residual exhaust gas from the interior volume.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: General Electric Company
    Inventors: Sebastian W. Freund, Herbert Kopecek, Matthew Alexander Lehar, Pierre Sébastien Huck, Albert Andreas Scharl, Mario Martini, Paolo Castellani, Gabor Ast, Thomas Johannes Frey, Giacomo Seghi, Vincenzo Amato, Mauro Cappelli, Stefano Bartolozzi
  • Publication number: 20100281865
    Abstract: An ORC system configured to limit temperature of a working fluid below a threshold temperature is provided. The ORC system includes a heat source configured to convey a waste heat fluid. The ORC system also includes a heat exchanger coupled to the heat source. The heat exchanger includes an evaporator configured to receive the waste heat fluid from the heat source and vaporize the working fluid, wherein the evaporator is further configured to allow heat exchange between the waste heat fluid and the vaporized working fluid at an elevated temperature and further produce an evaporator outlet flow including a lower temperature waste heat fluid.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Alexander Lehar, Sebastian W. Freund, Giacomo Seghi
  • Publication number: 20100281864
    Abstract: An ORC system configured to limit temperature of a working fluid below a threshold temperature is provided. The ORC system includes a heat source configured to provide waste heat fluid. The ORC system also includes a heat exchanger coupled to the heat source, wherein the heat exchanger includes multiple external or internal enhancement features. The external enhancement features are configured to reduce a first heat transfer coefficient between the working fluid and the waste heat fluid from the heat source, external to the heat exchanger. The internal enhancement features are configured to increase a second heat transfer coefficient between the working fluid and the waste heat fluid from a heat source, internal to the heat exchanger.
    Type: Application
    Filed: May 6, 2009
    Publication date: November 11, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Matthew Alexander Lehar, Sebastian W. Freund, Giacomo Seghi