Patents by Inventor Gianfranco Guidati

Gianfranco Guidati has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9523311
    Abstract: Reliable, low-NOx-emission operation of a gas turbine plant with hydrogen-rich fuel gas, and a gas turbine plant with a device for water injection into hydrogen-rich fuels in a gas turbine, involves suitable water injection (21), a water-fuel gas mist, i.e., a fuel gas in which fine water droplets are suspended, is created in the fuel gas feed line (15). This mist is introduced into the burners (20) of the gas turbine. As a result of the water-fuel gas mist, four effects are combined for ignition delay and reduction of the flame velocity of hydrogen-rich fuel gas. When using a water-fuel gas mist, the water, in a directed manner, reaches the region in the burner (20) in which it directly has the greatest possible effect upon the flame or the flame velocity.
    Type: Grant
    Filed: November 6, 2009
    Date of Patent: December 20, 2016
    Assignee: GENERAL ELECTRIC TECHNOLOGY GMBH
    Inventors: Richard Carroni, Gianfranco Guidati
  • Patent number: 8783042
    Abstract: A method for operating a firing plant with at least one combustion chamber and at least one burner, especially a gas turbine, includes an operating characteristic for operating the combustion chamber close to the lean extinction limit defined as a burner group staging ratio (BGVRich). Pressure pulsations (PulsActual) measured in the combustion chamber are processed by a filter device (2) and converted into corresponding signals (PulsActual,Filter(t)). An exceeding/falling short of at least one pulsation limiting value (PulsLimit) is monitored by a monitoring device (3) and adapts a pulsation reference value (PulsRef) in dependence upon the monitoring. The processed pressure pulsations (PulsActual,Filter(t)) are then compared with the adapted pulsation reference value (PulsRef,adapt), and, from this, a correction value ?BGV is determined, by which the burner group staging ratio (BGVRich) is corrected, and as a result operation of the firing plant close to the lean extinction limit is realized.
    Type: Grant
    Filed: September 12, 2012
    Date of Patent: July 22, 2014
    Assignee: Alstom Technology Ltd
    Inventors: Mauricio Garay, Gianfranco Guidati, Stanka Kokanovic, Stephan Torchalla
  • Publication number: 20130019605
    Abstract: A method for operating a firing plant with at least one combustion chamber and at least one burner, especially a gas turbine, includes an operating characteristic for operating the combustion chamber close to the lean extinction limit defined as a burner group staging ratio (BGVRich). Pressure pulsations (PulsActual) measured in the combustion chamber are processed by a filter device (2) and converted into corresponding signals (PulsActual,Filter(t)). An exceeding/falling short of at least one pulsation limiting value (PulsLimit) is monitored by a monitoring device (3) and adapts a pulsation reference value (PulsRef) in dependence upon the monitoring. The processed pressure pulsations (PulsActual,Filter(t)) are then compared with the adapted pulsation reference value (PulsRef,adapt), and, from this, a correction value ?BGV is determined, by which the burner group staging ratio (BGVRich) is corrected, and as a result operation of the firing plant close to the lean extinction limit is realized.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 24, 2013
    Inventors: Mauricio GARAY, Gianfranco GUIDATI, Stanka KOKANOVIC, Stephan TORCHALLA
  • Patent number: 8327647
    Abstract: A low carbon emissions, combined cycle power plant utilizes vortex nozzles (38) operative at cryogenic temperatures to separate out carbon dioxide (39) from the flue gases. Complexity of the plant is minimized by operating a gas turbine engine component (10) of the plant at a turbine exhaust pressure of at least 2 bar, so that downstream components of the plant, including a heat recovery steam generator (19A), a gas cooling system (30, 33, 36), and the inlets of the vortex nozzles, all operate at the same pressure of at least two bar. To increase carbon dioxide concentration in the flue gases (37) that pass through the vortex nozzles (38), and thereby increase efficiency of carbon dioxide removal from the flue gases, up to 50% of the flue gases that exit the heat recovery steam generator (19A) may be recirculated to a location (L, FIG. 4)) in the compressor of the gas turbine engine where the pressure of the compressor air matches the flue gas pressure.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: December 11, 2012
    Assignee: ALSTOM Technology Ltd.
    Inventors: Gianfranco Guidati, Camille Pedretti
  • Patent number: 8117825
    Abstract: A gas turbine installation (1), in particular in a power plant for generating electricity, includes a turboset (2) having a turbine (4), a compressor (5) and a combustion chamber (6) arranged in a gas path (9) connecting the compressor (5) to the turbine (4), and a flue gas recirculation device (3), which passes combustion flue gas from the turbine (4) from a flue gas path (14) connected to the turbine (4) via a recirculation path (16) to a fresh gas path (13) connected to the compressor (5). To improve the efficiency of the gas turbine installation (1), a control device (17) controls a volumetric flow and/or a temperature of the recirculated combustion flue gases in such a way that a fresh gas/flue gas mixture which enters the compressor (5) is at a predetermined desired temperature.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: February 21, 2012
    Assignee: ALSTOM Technology Ltd.
    Inventors: Timothy Griffin, Gianfranco Guidati, Hans Wettstein, Majed Toqan
  • Patent number: 7985278
    Abstract: A method is provided for separating CO2 from an exhaust gas flow of a combustion process. The method includes: compressing the gas flow and cooling the compressed gas flow. The method also includes feeding the cooled gas flow to a swirl nozzle and separating the CO2 from the gas flow in the swirl nozzle. The method also includes discharging the CO2 which is separated in the swirl nozzle from the swirl nozzle for separate further treatment. A CO2 separating device is also provided that separates CO2 from an exhaust gas flow of a combustion process that operates with fossil fuels. The device includes a swirl nozzle which is exposed to through-flow of the gas flow, a compressor located upstream or downstream of the swirl nozzle, and a plurality of cooling devices which are provided upstream of the swirl nozzle for cooling of the gas flow which comes from the compressor.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: July 26, 2011
    Assignee: Alstom Technology Ltd.
    Inventors: Gianfranco Guidati, Alexander Ni
  • Publication number: 20100319354
    Abstract: A low carbon emissions, combined cycle power plant utilizes vortex nozzles (38) operative at cryogenic temperatures to separate out carbon dioxide (39) from the flue gases. Complexity of the plant is minimized by operating a gas turbine engine component (10) of the plant at a turbine exhaust pressure of at least 2 bar, so that downstream components of the plant, including a heat recovery steam generator (19A), a gas cooling system (30, 33, 36), and the inlets of the vortex nozzles, all operate at the same pressure of at least two bar. To increase carbon dioxide concentration in the flue gases (37) that pass through the vortex nozzles (38), and thereby increase efficiency of carbon dioxide removal from the flue gases, up to 50% of the flue gases that exit the heat recovery steam generator (19A) may be recirculated to a location (L, FIG. 4)) in the compressor of the gas turbine engine where the pressure of the compressor air matches the flue gas pressure.
    Type: Application
    Filed: August 2, 2010
    Publication date: December 23, 2010
    Inventors: Gianfranco Guidati, Camille Pedretti
  • Publication number: 20090173073
    Abstract: A method is provided for separating CO2 from an exhaust gas flow of a combustion process. The method includes: compressing the gas flow and cooling the compressed gas flow. The method also includes feeding the cooled gas flow to a swirl nozzle and separating the CO2 from the gas flow in the swirl nozzle. The method also includes discharging the CO2 which is separated in the swirl nozzle from the swirl nozzle for separate further treatment. A CO2 separating device is also provided that separates CO2 from an exhaust gas flow of a combustion process that operates with fossil fuels. The device includes a swirl nozzle which is exposed to through-flow of the gas flow, a compressor located upstream or downstream of the swirl nozzle, and a plurality of cooling devices which are provided upstream of the swirl nozzle for cooling of the gas flow which comes from the compressor.
    Type: Application
    Filed: February 6, 2009
    Publication date: July 9, 2009
    Applicant: ALSTOM Technology Ltd.
    Inventors: Gianfranco GUIDATI, Alexander NI
  • Publication number: 20090037029
    Abstract: A method for operating a firing plant with at least one combustion chamber and with at least one burner for producing hot gas, especially a gas turbine, preferably of a power generating plant, includes an operating characteristic for operating the combustion chamber close to the lean extinction limit defined in the form of a burner group staging ratio (BGVRich). The pressure pulsations (PulsActual) which are measured in the combustion chamber are processed by a filter device (2) and converted into corresponding signals (PulsActual,Filter(t)). An exceeding/falling short of at least one pulsation limiting value (PulsLimit) is monitored by a monitoring device (3) and adapts a pulsation reference value (PulsRef) in dependence upon the monitoring.
    Type: Application
    Filed: July 10, 2008
    Publication date: February 5, 2009
    Inventors: Mauricio GARAY, Gianfranco GUIDATI, Stanka KOKANOVIC, Stephan TORCHALLA
  • Publication number: 20070034171
    Abstract: A gas turbine installation (1), in particular in a power plant for generating electricity, includes a turboset (2) having a turbine (4), a compressor (5) and a combustion chamber (6) arranged in a gas path (9) connecting the compressor (5) to the turbine (4), and a flue gas recirculation device (3), which passes combustion flue gas from the turbine (4) from a flue gas path (14) connected to the turbine (4) via a recirculation path (16) to a fresh gas path (13) connected to the compressor (5). To improve the efficiency of the gas turbine installation (1), a control device (17) controls a volumetric flow and/or a temperature of the recirculated combustion flue gases in such a way that a fresh gas/flue gas mixture which enters the compressor (5) is at a predetermined desired temperature.
    Type: Application
    Filed: March 29, 2006
    Publication date: February 15, 2007
    Inventors: Timothy Griffin, Gianfranco Guidati, Hans Wettstein, Majed Toqan
  • Publication number: 20060040225
    Abstract: The invention relates to a method for operating a furnace with a multi-burner system for generating hot gas, particularly a gas turbine, preferably of a power plant, comprising a combustion chamber (1) with at least one burner (2). In order to operate the combustion chamber (1) in a stable manner close to the lean extinguishing limit, the fuel feed to at least one burner (2) is regulated as a function of the pressure pulsations that occur in the combustion chamber (1) in order to achieve a steady operation of the gas turbine.
    Type: Application
    Filed: July 20, 2005
    Publication date: February 23, 2006
    Applicant: ALSTOM Technology Ltd
    Inventors: Mauricio Garay, Gianfranco Guidati, Douglas Pennell, Frank Reiss