Patents by Inventor Gianluca ROSCIOLI

Gianluca ROSCIOLI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230289947
    Abstract: Systems and methods for analyzing mechanical properties in-situ and in real-time of an object being additively manufactured are provided. Such systems can include an inducer (e.g., micro- or nano-inducer) that measures one or more parameters of the object being manufactured, such as a hardness or modulus of material deposited to form the object, and one or more cameras that generate one or more images of the object being manufactured. The measured parameter(s) and generated image(s) can be used by a controller in real-time to generate one or more topographic images of the object being printed and/or one or more 3D-maps of the object being printed. Alternatively, or additionally, the controller can be used to modify parameters that impact the object being printed, such as parameters associated with the printer or a surrounding print environment. Methods of printing based on such systems are also provided.
    Type: Application
    Filed: September 15, 2021
    Publication date: September 14, 2023
    Inventors: Cemal Cem TASAN, Gianluca ROSCIOLI
  • Publication number: 20220371146
    Abstract: The present disclosure is directed to systems, compositions, and methods for manufacturing objects with sharp edges having a high strength and hardness. To form the sharp edge, an object can be subjected to a compressive force that locally deforms the object to create the sharp edge. In some embodiments, deformation can occur by passing the material through a system of one or more opposed tapered rolls having one or more tapering angles for deforming the material. The tapered rolls can rotate and drive the material downstream to a next opposed pair of tapered rolls. The tapered rolls deform the material by changing the material microstructure, compressing the grains of the material in a predetermined location to create a more homogeneous microstructure. The local modification of the resulting microstructure increases the homogeneity as well as the hardness and strength of the material and prevents cracking and/or chipping of the material.
    Type: Application
    Filed: September 18, 2020
    Publication date: November 24, 2022
    Inventors: Gianluca ROSCIOLI, Cemal Cem TASAN