Patents by Inventor Giedrius Gasiunas
Giedrius Gasiunas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12264328Abstract: The present disclosure provides methods and compositions comprising Cas TypeV programmable nucleases and lipid nanoparticles capable of delivering the Cas TypeV programmable nucleases and genome editing systems comprising same.Type: GrantFiled: October 5, 2023Date of Patent: April 1, 2025Assignee: ReNAgade Therapeutics Management, Inc.Inventors: Giedrius Gasiunas, Alim Ladha, Vladimir Presnyak, Muthusamy Jayaraman, Elisabeth Narayanan
-
Patent number: 12084676Abstract: Compositions and methods are provided for novel Cas9 orthologs, including, but not limiting to, novel guide polynucleotide/Cas9 endonucleases complexes, single or dual guide RNAs, guide RNA elements, and Cas9 endonucleases. The present disclosure also describes methods for creating a double strand break in a target polynucleotide, methods for genome modification of a target sequence under various in vivo and in vitro conditions, in the genome of a cell, for gene editing, and for inserting a polynucleotide of interest into the genome of a cell. Also provided are nucleic acid constructs and cells having a modified target site or altered polynucleotide of interest produced by the methods described herein.Type: GrantFiled: February 22, 2019Date of Patent: September 10, 2024Assignee: PIONEER HI-BRED INTERNATIONAL, INC.Inventors: Zhenglin Hou, Joshua K. Young, Giedrius Gasiunas, Virginijus Siksnys
-
Publication number: 20240141382Abstract: The present disclosure provides methods and compositions comprising novel Cas TypeV programmable nucleases and lipid nanoparticles capable of delivering the Cas TypeV programmable nucleases and genome editing systems comprising same. For therapeutic applications, as well as plants and industrial biotechnology.Type: ApplicationFiled: October 5, 2023Publication date: May 2, 2024Inventors: Giedrius Gasiunas, Alim Ladha, Vladimir Presnyak, Muthusamy Jayaraman
-
Publication number: 20240084274Abstract: The present disclosure provides methods and compositions comprising novel Cas TypeV programmable nucleases and lipid nanoparticles capable of delivering the Cas TypeV programmable nucleases and genome editing systems comprising same. For therapeutic applications, as well as plants and industrial biotechnology.Type: ApplicationFiled: April 7, 2023Publication date: March 14, 2024Applicant: ReNAgade Therapeutics Management Inc.Inventors: Giedrius Gasiunas, Alim Ladha, Vladimir Presnyak, Muthusamy Jayaraman
-
Publication number: 20230123754Abstract: Isolation or in vitro assembly of the Cas9-crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system and use for cleavage of DNA bearing a nucleotide sequence complementary to the crRNA and a proto-spacer adjacent motif. Methods for site-specific modification of a target DNA molecule using an RNA-guided DNA endonuclease comprising at least one RNA sequence and at least one of an RuvC active site motif and an HNH active site motif; for conversion of Cas9 polypeptide into a nickase cleaving one strand of double-stranded DNA by inactivating one of the active sites (RuvC or HNH) in the polypeptide by at least one point mutation; for assembly of active polypeptide-polyribonucleotides complex in vivo or in vitro; and for re-programming a Cas9-crRNA complex specificity in vitro or using a cassette containing a single repeat-spacer-repeat unit.Type: ApplicationFiled: July 5, 2022Publication date: April 20, 2023Applicant: Vilnius UniversityInventors: Virginijus {hacek over (S)}iksnys, Giedrius Gasiunas, Tautvydas Karvelis
-
Patent number: 11555187Abstract: Isolation or in vitro assembly of the Cas9-crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system and use for cleavage of DNA bearing a nucleotide sequence complementary to the crRNA and a proto-spacer adjacent motif. Methods for site-specific modification of a target DNA molecule in vitro or in vivo using an RNA-guided DNA endonuclease comprising RNA sequences and at least one of an RuvC active site motif and an HNH active site motif; for conversion of Cas9 polypeptide into a nickase cleaving one strand of double-stranded DNA by inactivating one of the active sites (RuvC or HNH) in the polypeptide by at least one point mutation; for assembly of active polypeptide-polyribonucleotides complex in vivo or in vitro; and for re-programming a Cas9-crRNA complex specificity in vitro and using a cassette containing a single repeat-spacer-repeat unit.Type: GrantFiled: December 7, 2017Date of Patent: January 17, 2023Assignee: Vilnius UniversityInventors: Virginijus {hacek over (S)}ik{hacek over (s)}nys, Giedrius Gasiunas, Tautvydas Karvelis, Arvydas Lubys, Lolita Zaliauskiene, Monika Gasiuniene, Anja Smith
-
Patent number: 11371050Abstract: Compositions and methods are provided for rapid characterization of Cas endonuclease systems and the elements comprising such systems, including, but not limiting to, rapid characterization of PAM sequences, guide RNA elements and Cas endonucleases. Type II Cas9 endonuclease systems originating from Brevibacillus laterosporus, Lactobacillus reuteri Mlc3, Lactobacillus rossiae DSM 15814, Pediococcus pentosaceus SL4, Lactobacillus nodensis JCM 14932, Sulfurospirillum sp. SCADC, Bifidobacterium thermophilum DSM 20210, Loktanella vestfoldensis, Sphingomonas sanxanigenens NX02, Epilithonimonas tenax DSM 16811, Sporocytophaga myxococcoides are described herein. The present disclosure also describes methods for genome modification of a target sequence in the genome of a cell, for gene editing, and for inserting a polynucleotide of interest into the genome of a cell.Type: GrantFiled: May 12, 2016Date of Patent: June 28, 2022Inventors: Andrew Mark Cigan, Giedrius Gasiunas, Tautvydas Karvelis, Virginijus Siksnys, Joshua K Young
-
Publication number: 20190085329Abstract: Isolation or in vitro assembly of the Cas9-crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system and use for cleavage of DNA bearing a nucleotide sequence complementary to the crRNA and a proto-spacer adjacent motif. Methods for site-specific modification of a target DNA molecule using an RNA-guided DNA endonuclease comprising at least one RNA sequence and at least one clan RuvC active site motif and an HNH active site motif; for conversion of Cas9 polypeptide into a nickase cleaving one strand of double-stranded DNA by inactivating one of the active sites (RuvC or HNH) in the polypeptide by at least one point mutation; for assembly of active polypeptide-polyribonucleotides complex in vivo or in vitro; and for re-programming a Cas9-crRNA complex specificity in vitro or using a cassette containing a single repeat-spacer-repeat unit.Type: ApplicationFiled: October 1, 2018Publication date: March 21, 2019Applicant: Vilnius UniversityInventors: Virginijus {hacek over (S)}IK{hacek over (S)}NYS, Giedrius Gasiunas, Tautvydas Karvelis
-
Patent number: 9637739Abstract: Isolation or in vitro assembly of the Cas9-crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system and use for cleavage of DNA bearing a nucleotide sequence complementary to the crRNA and a proto-spacer adjacent motif. Methods for site-specific modification of a target DNA molecule using an RNA-guided DNA endonuclease comprising at least one RNA sequence and at least one of an RuvC active site motif and an HNH active site motif; for conversion of Cas9 polypeptide into a nickase cleaving one strand of double-stranded DNA by inactivating one of the active sites (RuvC or HNH) in the polypeptide by at least one point mutation; for assembly of active polypeptide-polyribonucleotides complex in vivo or in vitro; and for re-programming a Cas9-crRNA complex specificity in vitro or using a cassette containing a single repeat-spacer-repeat unit.Type: GrantFiled: March 15, 2013Date of Patent: May 2, 2017Assignee: VILNIUS UNIVERSITYInventors: Virginijus {hacek over (S)}ik{hacek over (s)}nys, Giedrius Gasiunas, Tautvydas Karvelis
-
Publication number: 20150050699Abstract: Isolation or in vitro assembly of the Cas9-crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system and use for cleavage of DNA bearing a nucleotide sequence complementary to the crRNA and a proto-spacer adjacent motif. Methods for site-specific modification of a target DNA molecule in vitro or in vivo using an RNA-guided DNA endonuclease comprising RNA sequences and at least one of an RuvC active site motif and an HNH active site motif; for conversion of Cas9 polypeptide into a nickase cleaving one strand of double-stranded DNA by inactivating one of the active sites (RuvC or HNH) in the polypeptide by at least one point mutation; for assembly of active polypeptide-polyribonucleotides complex in vivo or in vitro; and for re-programming a Cas9-crRNA complex specificity in vitro and using a cassette containing a single repeat-spacer-repeat unit.Type: ApplicationFiled: March 20, 2013Publication date: February 19, 2015Inventors: Virginijus Siksnys, Giedrius Gasiunas, Tautvydad Karvelis, Arvydas Lubys, Lolita Zaliauskiene, Monika Glemzaite, Anja Smith
-
Publication number: 20150045546Abstract: Isolation or in vitro assembly of the Cas9-crRNA complex of the Streptococcus thermophilus CRISPR3/Cas system and use for cleavage of DNA bearing a nucleotide sequence complementary to the crRNA and a proto-spacer adjacent motif. Methods for site-specific modification of a target DNA molecule using an RNA-guided DNA endonuclease comprising at least one RNA sequence and at least one of an RuvC active site motif and an HNH active site motif; for conversion of Cas9 polypeptide into a nickase cleaving one strand of double-stranded DNA by inactivating one of the active sites (RuvC or HNH) in the polypeptide by at least one point mutation; for assembly of active polypeptide-polyribonucleotides complex in vivo or in vitro; and for re-programming a Cas9-crRNA complex specificity in vitro or using a cassette containing a single repeat-spacer-repeat unit.Type: ApplicationFiled: March 15, 2013Publication date: February 12, 2015Applicant: Vilnius UniversityInventors: Virginijus Siksnys, Giedrius Gasiunas, Tautvydas Karvelis