Patents by Inventor Gil A. Speyer

Gil A. Speyer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230207068
    Abstract: Methods are provided to classify and identify features in mass spectral data using neural network algorithms. A convolutional neural network (CNN) was trained to identify amino acids from an unknown protein sample. The CNN was trained using known peptide sequences to predict amino acid presence, diversity, and frequency, peptide length, subsequences of amino acids classified by features include aliphatic/aromatic, hydrophobic/hydrophilic, positive/negative charge, and combinations thereof. Mass spectra data of a sample unknown to the trained CNN was discretized into a one-dimensional vector and input into the CNN. The CNN models can potentially be integrated to determine the complete peptide sequence from a spectrum, thereby improving the yield of identifiable protein sequences from mass spec analysis.
    Type: Application
    Filed: February 20, 2023
    Publication date: June 29, 2023
    Applicant: THE TRANSLATIONAL GENOMICS RESEARCH INSTITUTE
    Inventors: Patrick Pirrotte, Gil Speyer, Ritin Sharma, Krystine Garcia-Mansfield
  • Patent number: 11587644
    Abstract: Methods are provided to classify and identify features in mass spectral data using neural network algorithms. A convolutional neural network (CNN) was trained to identify amino acids from an unknown protein sample. The CNN was trained using known peptide sequences to predict amino acid presence, diversity, and frequency, peptide length, subsequences of amino acids classified by features include aliphatic/aromatic, hydrophobic/hydrophilic, positive/negative charge, and combinations thereof. Mass spectra data of a sample unknown to the trained CNN was discretized into a one-dimensional vector and input into the CNN. The CNN models can potentially be integrated to determine the complete peptide sequence from a spectrum, thereby improving the yield of identifiable protein sequences from mass spec analysis.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: February 21, 2023
    Assignee: The Translational Genomics Research Institute
    Inventors: Patrick Pirrotte, Gil Speyer, Ritin Sharma, Krystine Garcia-Mansfield
  • Publication number: 20190034586
    Abstract: Methods are provided to classify and identify features in mass spectral data using neural network algorithms. A convolutional neural network (CNN) was trained to identify amino acids from an unknown protein sample. The CNN was trained using known peptide sequences to predict amino acid presence, diversity, and frequency, peptide length, subsequences of amino acids classified by features include aliphatic/aromatic, hydrophobic/hydrophilic, positive/negative charge, and combinations thereof. Mass spectra data of a sample unknown to the trained CNN was discretized into a one-dimensional vector and input into the CNN. The CNN models can potentially be integrated to determine the complete peptide sequence from a spectrum, thereby improving the yield of identifiable protein sequences from mass spec analysis.
    Type: Application
    Filed: July 30, 2018
    Publication date: January 31, 2019
    Applicant: THE TRANSLATIONAL GENOMICS RESEARCH INSTITUTE
    Inventors: Patrick Pirrotte, Gil Speyer, Ritin Sharma, Krystine Garcia-Mansfield
  • Patent number: 6611477
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. A phase discriminator samples the output of the oscillator and accumulates data representing the signal propagation delay of either rising or falling signal transitions propagating through the test circuit. The worst-case delay associated with the test circuit can then be expressed as the longer of the two. Knowing the precise worst-case delay allows IC A designers to minimize the guard band and consequently guarantee higher speed performance.
    Type: Grant
    Filed: April 24, 2002
    Date of Patent: August 26, 2003
    Assignee: Xilinx, Inc.
    Inventors: Gil A. Speyer, David L. Ferguson, Daniel Y. Chung, Robert D. Patrie, Robert W. Wells, Robert O. Conn
  • Patent number: 6466520
    Abstract: A circuit measures the signal propagation delay through a selected test circuit. The test circuit is provided with a feedback path so that the test circuit and feedback path together form a free-running oscillator. The oscillator then automatically provides its own test signal that includes alternating rising and falling signal transitions on the test-circuit input node. A phase discriminator samples the output of the oscillator and accumulates data representing the signal propagation delay of either rising or falling signal transitions propagating through the test circuit. The worst-case delay associated with the test circuit can then be expressed as the longer of the two. Knowing the precise worst-case delay allows IC designers to minimize the guard band and consequently guarantee higher speed performance.
    Type: Grant
    Filed: February 5, 1999
    Date of Patent: October 15, 2002
    Assignee: Xilinx, Inc.
    Inventors: Gil A. Speyer, David L. Ferguson, Daniel Y. Chung, Robert D. Patrie, Robert W. Wells, Robert O. Conn