Patents by Inventor Gil-heyun Choi

Gil-heyun Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8466052
    Abstract: A method of fabricating a semiconductor device can include forming a trench in a semiconductor substrate, forming a first conductive layer on a bottom surface and side surfaces of the trench, and selectively forming a second conductive layer on the first conductive layer to be buried in the trench. The second conductive layer may be formed selectively on the first conductive layer by using an electroless plating method or using a metal organic chemical vapor deposition (MOCVD) or an atomic layer deposition (ALD) method.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: June 18, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-min Baek, Hee-sook Park, Seong-hwee Cheong, Gil-heyun Choi, Byung-hak Lee, Tae-ho Cha, Jae-hwa Park, Su-kyoung Kim
  • Publication number: 20130119547
    Abstract: An integrated circuit device includes a substrate through which a first through-hole extends, and an interlayer insulating film on the substrate, the interlayer insulating film having a second through-hole communicating with the first through-hole. A Through-Silicon Via (TSV) structure is provided in the first through-hole and the second through-hole. The TSV structure extends to pass through the substrate and the interlayer insulating film. The TSV structure comprises a first through-electrode portion having a top surface located in the first through-hole, and a second through-electrode portion having a bottom surface contacting with the top surface of the first through-electrode portion and extending from the bottom surface to at least the second through-hole. Related fabrication methods are also described.
    Type: Application
    Filed: September 5, 2012
    Publication date: May 16, 2013
    Inventors: Su-kyoung Kim, Gil-heyun Choi, Byung-Iyul Park, Kwang-jin Moon, Kun-sang Park, Dong-chan Lim, Do-sun Lee
  • Patent number: 8422845
    Abstract: A photo-electric integrated circuit device comprises an on-die optical input/output device. The on-die optical input/output device comprises a substrate having a trench, a lower cladding layer disposed in the trench and having an upper surface lower than an upper surface of the substrate, and a core disposed on the lower cladding layer at a distance from sidewalls of the trench and having an upper surface at substantially the same level as the upper surface of the substrate.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: April 16, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-Kyu Kang, Dae Lok Bae, Gil Heyun Choi, Jong Myeong Lee
  • Patent number: 8404579
    Abstract: A fuse base insulating region, for example, an insulating interlayer or a compensation region disposed in an insulating interlayer, is formed on a substrate. An etch stop layer is formed on the fuse base insulating region and forming an insulating interlayer having a lower dielectric constant than the first fuse base insulating region on the etch stop layer. A trench extending through the insulating interlayer and the etch stop layer and at least partially into the fuse base insulating region is formed. A fuse is formed in the trench. The fuse base insulating region may have a greater mechanical strength and/or density than the second insulating interlayer.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Hoon Ahn, Gil-Heyun Choi, Jong-Myeong Lee, Sang-Don Nam, Kyu-Hee Han
  • Patent number: 8404576
    Abstract: A gate structure includes an insulation layer on a substrate, a first conductive layer pattern on the insulation layer, a metal ohmic layer pattern on the first conductive layer pattern, a diffusion reduction layer pattern on the metal ohmic layer pattern an amorphous layer pattern on the diffusion reduction layer pattern, and a second conductive layer pattern on the amorphous layer pattern. The gate structure may have a low sheet resistance and desired thermal stability.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: March 26, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Ho Cha, Seong-Hwee Cheong, Gil-Heyun Choi, Byung-Hee Kim, Hee-Sook Park, Jong-Min Baek
  • Publication number: 20130062719
    Abstract: An optical input/output (I/O) device is provided. The device includes a substrate including an upper trench; a waveguide disposed within the upper trench of the substrate; a photodetector disposed within the upper trench of the substrate and comprising a first end surface optically connected to an end surface of the waveguide; and a light-transmitting insulating layer interposed between the end surface of the waveguide and the first end surface of the photodetector.
    Type: Application
    Filed: September 13, 2012
    Publication date: March 14, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Pil-Kyu KANG, Joong-Han SHIN, Byung-Lyul PARK, Gil-Heyun CHOI
  • Patent number: 8390120
    Abstract: A semiconductor device includes a via structure and a conductive structure. The via structure has a surface with a planar portion and a protrusion portion. The conductive structure is formed over at least part of the planar portion and not over at least part of the protrusion portion of the via structure. For example, the conductive structure is formed only onto the planar portion and not onto any of the protrusion portion for forming high quality connection between the conductive structure and the via structure.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: March 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kwang-Jin Moon, Pil-Kyu Kang, Dae-Lok Bae, Gil-Heyun Choi, Byung-Lyul Park, Dong-Chan Lim, Deok-Young Jung
  • Patent number: 8367535
    Abstract: Example embodiments herein relate to a method of fabricating a semiconductor device. The method may include forming a liner insulating layer on a surface of a gate pattern to have a first thickness. Subsequently, a gap fill layer may be formed on the liner insulating layer by flowable chemical vapor deposition (FCVD) or spin-on-glass (SOG). The liner insulating layer and the gap fill layer may be recessed such that the liner insulating layer has a second thickness, which is smaller than the first thickness, in the region in which a metal silicide will be formed. Metal silicide may be formed on the plurality of gate patterns to have a relatively uniform thickness using the difference in thickness of the liner insulating layer.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: February 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yong-Soon Choi, Ha-Young Yi, Gil-Heyun Choi, Eunkee Hong, Sang-Hoon Ahn
  • Patent number: 8367533
    Abstract: Provided are a semiconductor device and a method of forming the same. The method includes forming an interlayer dielectric on a semiconductor substrate, forming a contact hole in the interlayer dielectric to expose the semiconductor substrate, forming a metal pattern including a dopant on the exposed semiconductor substrate, and performing a heat treatment process to react the semiconductor substrate with the metal pattern to form a metal silicide pattern. The heat treatment process includes diffuses the dopant into the semiconductor substrate.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: February 5, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-Ho Yun, Gil-heyun Choi, Jong-Myeong Lee
  • Patent number: 8354308
    Abstract: A conductive layer buried-type substrate is disclosed. The substrate includes a silicon oxidation layer bonded to a supporting substrate, an adhesion promotion layer that is formed on the silicon oxidation layer and improves an adhesion between the silicon oxidation layer and a conductive layer, wherein the conductive layer is formed on the adhesion promotion layer and comprises a metal layer, and a single crystal semiconductor layer formed on the conductive layer.
    Type: Grant
    Filed: August 30, 2011
    Date of Patent: January 15, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-kyu Kang, Gil-heyun Choi, Dae-lok Bae, Byung-lyul Park, Dong-kak Lee
  • Publication number: 20130012023
    Abstract: According to example embodiments, a method of forming micropatterns includes forming dummy patterns having first widths on a dummy region of a substrate, and forming cell patterns having second widths on an active line region of the substrate. The active line region may be adjacent to the dummy region and the second widths may be less than the first widths. The method may further include forming damascene metallization by forming a seed layer on the active line region and the dummy region, forming a conductive material layer on a whole surface of the substrate, and planarizing the conductive material layer to form metal lines.
    Type: Application
    Filed: June 26, 2012
    Publication date: January 10, 2013
    Inventors: In-sun Park, Gil-heyun Choi, Ji-soon Park, Jong-myeong Lee, Jong-won Hong, Hei-seung Kim
  • Publication number: 20130005141
    Abstract: A semiconductor device can include an insulation layer on that is on a substrate on which a plurality of lower conductive structures are formed, where the insulation layer has an opening. A barrier layer is on a sidewall and a bottom of the opening of the insulation layer, where the barrier layer includes a first barrier layer in which a constituent of a first deoxidizing material is richer than a metal material in the first barrier layer and a second barrier layer in which a metal material in the second barrier layer is richer than a constituent of a second deoxidizing material. An interconnection is in the opening of which the sidewall and the bottom are covered with the barrier layer, the interconnection is electrically connected to the lower conductive structure.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Inventors: Jin-Ho Park, Gil-Heyun Choi, Byung-Lyul Park, Jong-Myeong Lee, Zung-Sun Choi, Hye-Kyung Jung
  • Publication number: 20120314993
    Abstract: Optical input/output (I/O) devices, which include a substrate including a trench, a waveguide within the trench of the substrate; and a photodetector within the trench and optically connected to the waveguide. An upper surface of the photodetector is at a same level as an upper surface of the waveguide.
    Type: Application
    Filed: June 12, 2012
    Publication date: December 13, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Pil-Kyu Kang, Dae-Lok Bae, Byung-Lyul Park, Gil-Heyun Choi
  • Publication number: 20120314991
    Abstract: Semiconductor devices having an optical transceiver include a cladding on a substrate, a protrusion vertically extending trough the cladding and materially in continuity with the substrate, and a coupler on the cladding and the protrusion.
    Type: Application
    Filed: March 5, 2012
    Publication date: December 13, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Pil-Kyu Kang, Dae-Lok Bae, Byung-Lyul Park, Gil-Heyun Choi
  • Patent number: 8324055
    Abstract: A method of manufacturing a buried wiring type substrate comprises implanting hydrogen ions into a single crystalline substrate through a first surface thereof to form an ion implantation region, forming a conductive layer comprising a metal on the first surface of the single crystalline substrate, forming an insulation layer comprising silicon oxide on the conductive layer, bonding the insulation layer to a support substrate to form a preliminary buried wiring type substrate, and separating the single crystalline substrate at the ion implantation region to form a single crystalline semiconductor layer on the conductive layer.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: December 4, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Pil-Kyu Kang, Dae-Lok Bae, Gil-Heyun Choi, Jong-Myeong Lee
  • Publication number: 20120282736
    Abstract: In a method of manufacturing a semiconductor device, a front end of line (FEOL) process may be performed on a semiconductor substrate to form a semiconductor structure. A back end of line (BEOL) process may be performed on the semiconductor substrate to form a wiring structure electrically connected to the semiconductor structure, thereby formed a semiconductor chip. A hole may be formed through a part of the semiconductor chip. A preliminary plug may have a dimple in the hole. The preliminary plug may be expanded into the dimple by a thermal treatment process to form a plug. Thus, the plug may not have a protrusion protruding from the upper surface of the semiconductor chip, so that the plug may be formed by the single CMP process.
    Type: Application
    Filed: April 30, 2012
    Publication date: November 8, 2012
    Inventors: Kwang-Jin MOON, Byung-Lyul PARK, Do-Sun LEE, Gil-Heyun CHOI, Suk-Chul BANG, Dong-Chan LIM, Deok-Young JUNG
  • Publication number: 20120280391
    Abstract: A conductive pattern structure includes a first insulating interlayer on a substrate, metal wiring on the first insulating interlayer, a second insulating interlayer on the metal wiring, and first and second metal contacts extending through the second insulating interlayer. The first metal contacts contact the metal wiring in a cell region and the second metal contact contacts the metal wiring in a peripheral region. A third insulating interlayer is disposed on the second insulating interlayer. Conductive segments extend through the third insulating interlayer in the cell region and contact the first metal contacts. Another conductive segment extends through the third insulating interlayer in the peripheral region and contacts the second metal contact. The structure facilitates the forming of uniformly thick wiring in the cell region using an electroplating process.
    Type: Application
    Filed: April 5, 2012
    Publication date: November 8, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: HEI-SEUNG KIM, GIL-HEYUN CHOI, JI-SOON PARK, JONG-MYEONG LEE
  • Patent number: 8304343
    Abstract: In a method of manufacturing a metal wiring structure, a first metal wiring and a first barrier layer are formed on a substrate, and the first barrier layer is nitridated. An insulating interlayer is formed on the substrate so as to extend over the first metal wiring and the first barrier layer. Part of the insulating interlayer is removed to form a hole exposing at least part of the first metal wiring and part of the first barrier layer. A nitridation plasma treatment is performed on the exposed portion of the first barrier layer. A second barrier layer is formed along the bottom and sides of the hole. A plug is formed on the second barrier layer to fill the hole.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: November 6, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-In Choi, Hyeon-Deok Lee, Gil-Heyun Choi, Jong-Myeong Lee
  • Patent number: 8288275
    Abstract: Provided are methods of forming a contact plug of a semiconductor device. Methods of forming a contact plug of a semiconductor device may include forming an interlayer insulating layer on a semiconductor substrate on which a lower structure is formed, forming a contact hole in the interlayer insulating layer, the contact hole exposing the lower structure, and forming a W layer and then a WN layer to form a W/WN barrier layer in the contact hole. Methods may include H2 remote plasma treating the W/WN barrier layer, forming a W-plug on the H2 remote plasma treated W/WN barrier layer to fill the contact hole, and chemical mechanical polishing (CMP) the W-plug and then the W/WN barrier layer in order to expose the interlayer insulating layer.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: October 16, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-ho Park, Gil-heyun Choi, Sang-woo Lee, Jun-ho Park, Ho-ki Lee
  • Patent number: 8278207
    Abstract: A semiconductor device can include an insulation layer on that is on a substrate on which a plurality of lower conductive structures are formed, where the insulation layer has an opening. A barrier layer is on a sidewall and a bottom of the opening of the insulation layer, where the barrier layer includes a first barrier layer in which a constituent of a first deoxidizing material is richer than a metal material in the first barrier layer and a second barrier layer in which a metal material in the second barrier layer is richer than a constituent of a second deoxidizing material. An interconnection is in the opening of which the sidewall and the bottom are covered with the barrier layer, the interconnection is electrically connected to the lower conductive structure.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: October 2, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jin-Ho Park, Gil-Heyun Choi, Byung-Lyul Park, Jong-Myeong Lee, Zung-Sun Choi, Hye-Kyung Jung