Patents by Inventor Gilles Festes

Gilles Festes has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240274591
    Abstract: A semiconductor device includes a semiconductor substrate, a first module of circuitry formed on the semiconductor substrate, a second module of circuitry formed on the semiconductor substrate, and a communication ring that encircles the first module of circuitry. The communication ring includes an insulation material disposed over the semiconductor substrate, a plurality of electrical connectors disposed over the semiconductor substrate and extending across a width of the communication ring, and a conductive diffusion in the semiconductor substrate that encircles the first module of circuitry.
    Type: Application
    Filed: February 15, 2023
    Publication date: August 15, 2024
    Inventors: Jinho KIM, CYNTHIA FUNG, PARVIZ GHAZAVI, JEAN FRANCOIS THIERY, CATHERINE DECOBERT, GILLES FESTES, BRUNO VILLARD, YURI TKACHEV, XIAN LIU, NHAN DO
  • Patent number: 12020762
    Abstract: A method of testing non-volatile memory cells formed on a die includes erasing the memory cells and performing a first read operation to determine a lowest read current RC1 for the memory cells and a first number N1 of the memory cells having the lowest read current RC1. A second read operation is performed to determine a second number N2 of the memory cells having a read current not exceeding a target read current RC2. The target read current RC2 is equal to the lowest read current RC1 plus a predetermined current value. The die is determined to be acceptable if the second number N2 is determined to exceed the first number N1 plus a predetermined number. The die is determined to be defective if the second number N2 is determined not to exceed the first number N1 plus the predetermined number.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: June 25, 2024
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Yuri Tkachev, Jinho Kim, Cynthia Fung, Gilles Festes, Bernard Bertello, Parviz Ghazavi, Bruno Villard, Jean Francois Thiery, Catherine Decobert, Serguei Jourba, Fan Luo, Latt Tee, Nhan Do
  • Publication number: 20230101585
    Abstract: A method of testing non-volatile memory cells formed on a die includes erasing the memory cells and performing a first read operation to determine a lowest read current RC1 for the memory cells and a first number N1 of the memory cells having the lowest read current RC1. A second read operation is performed to determine a second number N2 of the memory cells having a read current not exceeding a target read current RC2. The target read current RC2 is equal to the lowest read current RC1 plus a predetermined current value. The die is determined to be acceptable if the second number N2 is determined to exceed the first number N1 plus a predetermined number. The die is determined to be defective if the second number N2 is determined not to exceed the first number N1 plus the predetermined number.
    Type: Application
    Filed: January 14, 2022
    Publication date: March 30, 2023
    Inventors: Yuri Tkachev, JINHO KIM, CYNTHIA FUNG, GILLES FESTES, BERNARD BERTELLO, PARVIZ GHAZAVI, BRUNO VILLARD, JEAN FRANCOIS THIERY, CATHERINE DECOBERT, SERGUEI JOURBA, FAN LUO, LATT TEE, NHAN DO
  • Patent number: 11362218
    Abstract: A memory device includes a semiconductor substrate with memory cell and logic regions. A floating gate is disposed over the memory cell region and has an upper surface terminating in opposing front and back edges and opposing first and second side edges. An oxide layer has a first portion extending along the logic region and a first thickness, a second portion extending along the memory cell region and has the first thickness, and a third portion extending along the front edge with the first thickness and extending along a tunnel region portion of the first side edge with a second thickness less than the first thickness. A control gate has a first portion disposed on the oxide layer second portion and a second portion vertically over the front edge and the tunnel region portion of the first side edge. A logic gate is disposed on the oxide layer first portion.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: June 14, 2022
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Jinho Kim, Elizabeth Cuevas, Yuri Tkachev, Parviz Ghazavi, Bernard Bertello, Gilles Festes, Bruno Villard, Catherine Decobert, Nhan Do, Jean Francois Thiery
  • Publication number: 20210399127
    Abstract: A memory device includes a semiconductor substrate with memory cell and logic regions. A floating gate is disposed over the memory cell region and has an upper surface terminating in opposing front and back edges and opposing first and second side edges. An oxide layer has a first portion extending along the logic region and a first thickness, a second portion extending along the memory cell region and has the first thickness, and a third portion extending along the front edge with the first thickness and extending along a tunnel region portion of the first side edge with a second thickness less than the first thickness. A control gate has a first portion disposed on the oxide layer second portion and a second portion vertically over the front edge and the tunnel region portion of the first side edge. A logic gate is disposed on the oxide layer first portion.
    Type: Application
    Filed: June 23, 2020
    Publication date: December 23, 2021
    Inventors: Jinho Kim, Elizabeth Cuevas, Yuri Tkachev, Parviz Ghazavi, Bernard Bertello, Gilles Festes, Bruno Villard, Catherine Decobert, Nhan Do, Jean Francois Thiery
  • Patent number: 11018147
    Abstract: A method of forming a memory device includes forming a floating gate on a memory cell area of a semiconductor substrate, having an upper surface terminating in an edge. An oxide layer is formed having first and second portions extending along the logic and memory cell regions of the substrate surface, respectively, and a third portion extending along the floating gate edge. A non-conformal layer is formed having a first, second and third portions covering the oxide layer first, second and third portions, respectively. An etch removes the non-conformal layer third portion, and thins but does not entirely remove the non-conformal layer first and second portions. An etch reduces the thickness of the oxide layer third portion. After removing the non-conformal layer first and second portions, a control gate is formed on the oxide layer second portion and a logic gate is formed on the oxide layer first portion.
    Type: Grant
    Filed: February 4, 2020
    Date of Patent: May 25, 2021
    Assignee: Silicon Storage Technology, Inc.
    Inventors: Jinho Kim, Elizabeth Cuevas, Parviz Ghazavi, Bernard Bertello, Gilles Festes, Catherine Decobert, Yuri Tkachev, Bruno Villard, Nhan Do
  • Patent number: 10847225
    Abstract: Embodiments of the present disclosure provide systems and methods for improving the read window in a split-gate flash memory cell, e.g., by biasing the control gate terminal with a non-zero (positive or negative) voltage during cell read operations to improve or control the erased state read performance or the programmed state read performance of the cell. A method of operating a split-gate flash memory cell may include performing program operations, performing erase operations, and performing read operations in the cell, wherein each read operation includes applying a first non-zero voltage to the word line, applying a second non-zero voltage to the bit line, and applying a third non-zero voltage VCGR to the control gate.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: November 24, 2020
    Assignee: MICROCHIP TECHNOLOGY INCORPORATED
    Inventors: Sonu Daryanani, Matthew G. Martin, Gilles Festes
  • Publication number: 20190392899
    Abstract: Embodiments of the present disclosure provide systems and methods for improving the read window in a split-gate flash memory cell, e.g., by biasing the control gate terminal with a non-zero (positive or negative) voltage during cell read operations to improve or control the erased state read performance or the programmed state read performance of the cell. A method of operating a split-gate flash memory cell may include performing program operations, performing erase operations, and performing read operations in the cell, wherein each read operation includes applying a first non-zero voltage to the word line, applying a second non-zero voltage to the bit line, and applying a third non-zero voltage VCGR to the control gate.
    Type: Application
    Filed: June 20, 2018
    Publication date: December 26, 2019
    Applicant: Microchip Technology Incorporated
    Inventors: Sonu Daryanani, Matthew G. Martin, Gilles Festes