Patents by Inventor Gilles L'Espérance

Gilles L'Espérance has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11685982
    Abstract: An improved atomized powder metal material containing an increased amount of free graphite after heat treatment and/or sintering is provided. The powder metal material is typically a ferrous alloy and includes carbon in an amount of 1.0 wt. % to 6.5 wt. % and silicon in an amount of 0.1 wt. % to 6.0 wt. %, based on the total weight of the powder metal material. The powder metal material can also include various other alloying elements, for example at least one of nickel (Ni), cobalt (Co), copper (Cu), tin (Sn), aluminum (Al), sulfur (S), phosphorous (P), boron (B), nitrogen (N), chromium (Cr), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tungsten (W), titanium (Ti), tantalum (Ta) zirconium (Zr), zinc (Zn), strontium (Sr), calcium (Ca), barium (Ba) magnesium (Mg), lithium (Li), sodium (Na), and potassium (K).
    Type: Grant
    Filed: October 16, 2017
    Date of Patent: June 27, 2023
    Assignees: Tenneco Inc., Le Corporation de L'Ecole Polytechnique De Montreal
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, Jr.
  • Publication number: 20230037455
    Abstract: An improved atomized powder metal material containing an increased amount of free graphite after heat treatment and/or sintering is provided. The powder metal material is typically a ferrous alloy and includes carbon in an amount of 1.0 wt. % to 6.5 wt. % and silicon in an amount of 0.1 wt. % to 6.0 wt. %, based on the total weight of the powder metal material. The powder metal material can also include various other alloying elements, for example at least one of nickel (Ni), cobalt (Co), copper (Cu), tin (Sn), aluminum (Al), sulfur (S), phosphorous (P), boron (B), nitrogen (N), chromium (Cr), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tungsten (W), titanium (Ti), tantalum (Ta) zirconium (Zr), zinc (Zn), strontium (Sr), calcium (Ca), barium (Ba) magnesium (Mg), lithium (Li), sodium (Na), and potassium (K).
    Type: Application
    Filed: September 30, 2022
    Publication date: February 9, 2023
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, JR.
  • Patent number: 11198178
    Abstract: A metallic ink for solvent-cast 3D printing, the ink comprising a solution or a gel of a polymer in a volatile solvent, and heat-sinterable metallic particles dispersed in the solution or gel, wherein the particles are present in a particles:polymer weight ratio of more than about 85:15, is provided. There is also provided a method of manufacturing this ink and a method of manufacturing a solvent-cast metallic 3D printed material using this ink.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: December 14, 2021
    Inventors: Chao Xu, Daniel Therriault, Louis Laberge Lebel, Gilles L'Esperance, Arslane Bouchemit
  • Patent number: 10926334
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: February 23, 2021
    Assignee: Tenneco Inc.
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Publication number: 20200156156
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Application
    Filed: January 27, 2020
    Publication date: May 21, 2020
    Inventors: Philippe BEAULIEU, Denis B. Christopherson, JR., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Patent number: 10618110
    Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: April 14, 2020
    Assignee: Tenneco Inc.
    Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, Jr.
  • Patent number: 10543535
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: January 28, 2020
    Assignees: Tenneco Inc., Corporation de L'Ecole Polytechnique De Montreal
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Espérance
  • Publication number: 20190054536
    Abstract: A metallic ink for solvent-cast 3D printing, the ink comprising a solution or a gel of a polymer in a volatile solvent, and heat-sinterable metallic particles dispersed in the solution or gel, wherein the particles are present in a particles:polymer weight ratio of more than about 85:15, is provided. There is also provided a method of manufacturing this ink and a method of manufacturing a solvent-cast metallic 3D printed material using this ink.
    Type: Application
    Filed: August 16, 2018
    Publication date: February 21, 2019
    Inventors: CHAO XU, DANIEL THERRIAULT, LOUIS LABERGE LEBEL, GILLES L'ESPERANCE, ARSLANE BOUCHEMIT
  • Patent number: 10124411
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: September 16, 2015
    Date of Patent: November 13, 2018
    Assignees: Federal-Mogul LLC, La Corporation de l'Ecole Polytechnique de Montreal
    Inventors: Philippe Beaulieu, Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance
  • Publication number: 20180169751
    Abstract: A thermometric powder metal material for testing to replicate an actual powder material during use of the actual powder metal material in an internal combustion engine is provided. The thermometric powder metal material includes pores and has a decrease in hardness as a function of temperature according to the following equation: D Hardness/D Temperature=>0.5 HV/° C. The properties of the actual powder metal material, when the actual powder metal is used in an internal combustion engine, can be estimated using the thermometric powder metal material by first adjusting the thermal conductivity of the thermometric powder metal material or controlling the porosity of the thermometric powder metal material to replicate the actual powder metal material, and then subjecting thermometric powder metal material to an engine test. For example, the thermal conductivity can be adjusted by infiltrating the thermometric powder metal material with copper.
    Type: Application
    Filed: December 15, 2017
    Publication date: June 21, 2018
    Inventors: Philippe BEAULIEU, Denis B. CHRISTOPHERSON, JR., Leslie John FARTHING, Gilles L'ESPERANCE, Olivier SIOUI-LATULIPPE
  • Publication number: 20180104745
    Abstract: An improved method of manufacturing a powder metal material by water, gas, plasma, or rotating disk atomization is provided. The method includes adding at least one additive to a melted metal material before or during the atomization process. The at least one additive forms a protective gas atmosphere surrounding the melted metal material which is at least three times greater than the volume of melt to be treated. The protective atmosphere prevents introduction or re-introduction of contaminants, such as sulfur (S) and oxygen (O2), into the material. The atomized particles produced include at least one of the following advantages: median circularity of at least 0.60, median roundness of at least 0.60, less internal pores, less internal oxides, and an increased sphericity of the microstructural phases and/or constituents.
    Type: Application
    Filed: October 17, 2016
    Publication date: April 19, 2018
    Inventors: Gilles L'ESPERANCE, Mathieu BOISVERT, Denis B. CHRISTOPHERSON, JR., Philippe BEAULIEU
  • Publication number: 20180105906
    Abstract: An improved atomized powder metal material containing an increased amount of free graphite after heat treatment and/or sintering is provided. The powder metal material is typically a ferrous alloy and includes carbon in an amount of 1.0 wt. % to 6.5 wt. % and silicon in an amount of 0.1 wt. % to 6.0 wt. %, based on the total weight of the powder metal material. The powder metal material can also include various other alloying elements, for example at least one of nickel (Ni), cobalt (Co), copper (Cu), tin (Sn), aluminum (Al), sulfur (S), phosphorous (P), boron (B), nitrogen (N), chromium (Cr), manganese (Mn), molybdenum (Mo), vanadium (V), niobium (Nb), tungsten (W), titanium (Ti), tantalum (Ta) zirconium (Zr), zinc (Zn), strontium (Sr), calcium (Ca), barium (Ba) magnesium (Mg), lithium (Li), sodium (Na), and potassium (K).
    Type: Application
    Filed: October 16, 2017
    Publication date: April 19, 2018
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, JR.
  • Publication number: 20180104746
    Abstract: An improved method of manufacturing a cast part by sand casting, permanent mold casting, investment casting, lost foam casting, die casting, or centrifugal casting, or a powder metal material by water, gas, plasma, ultrasonic, or rotating disk atomization is provided. The method includes adding at least one additive to a melted metal material before or during the casting or atomization process. The at least one additive forms a protective gas atmosphere surrounding the melted metal material which is at least three times greater than the volume of melt to be treated. The protective atmosphere prevents introduction or re-introduction of contaminants, such as sulfur (S) and oxygen (O2), into the material. The cast parts or atomized particles produced include at least one of the following advantages: less internal pores, less internal oxides, median circularity of at least 0.60, median roundness of at least 0.60 and increased sphericity of microstructural phases and/or constituents.
    Type: Application
    Filed: September 1, 2017
    Publication date: April 19, 2018
    Inventors: Mathieu Boisvert, Gilles L'Esperance, Philippe Beaulieu, Denis B. Christopherson, JR.
  • Publication number: 20180001387
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Application
    Filed: September 13, 2017
    Publication date: January 4, 2018
    Inventors: Philippe BEAULIEU, Denis B. CHRISTOPHERSON, JR., Leslie John FARTHING, Todd SCHOENWETTER, Gilles L'ESPERANCE
  • Publication number: 20170129016
    Abstract: A powder metal steel alloy composition for high wear and temperature applications is made by water atomizing a molten steel alloy composition containing C in an amount of at least 3.0 wt %; at least one carbide-forming alloy element selected from the group consisting of: Cr, V, Mo or W; an O content less than about 0.5 wt %, and the balance comprising essentially Fe apart from incidental impurities. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming element(s) to oxidize during water atomization. The alloy elements are thus not tied up as oxides and are available to rapidly and readily form carbides in a subsequent sintering stage. The carbon, present in excess, is also available for diffusing into one or more other admixed powders that may be added to the prealloyed powder during sintering to control microstructure and properties of the final part.
    Type: Application
    Filed: January 13, 2017
    Publication date: May 11, 2017
    Inventors: DENIS B. CHRISTOPHERSON, JR., LESLIE JOHN FARTHING, TODD SCHOENWETTER, GILLES L'ESPERANCE, PHILIPPE BEAULIEU
  • Patent number: 9624568
    Abstract: A thermal spray powder is provided for use in a thermal spray technique, such as flame spraying, plasma spraying, cold spraying, and high velocity oxygen fuel spraying (HVOF). The thermal spray powder is formed by water or gas atomization and comprises 3.0 to 7.0 wt. % carbon, 10.0 to 25.0 wt. % chromium, 1.0 to 5.0 wt. % tungsten, 3.5 to 7.0 wt. % vanadium, 1.0 to 5.0 wt. % molybdenum, not greater than 0.5 wt. % oxygen, and at least 40.0 wt. % iron, based on the total weight of the thermal spray powder. The thermal spray powder can be applied to a metal body, such as a piston or piston ring, to form a coating. The thermal spray powder can also provide a spray-formed part.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 18, 2017
    Assignees: Federal-Mogul Corporation
    Inventors: Denis B. Christopherson, Jr., Gilles L'Esperance, Jeremy Koth, Philippe Beaulieu, Leslie John Farthing, Todd Schoenwetter
  • Patent number: 9546412
    Abstract: A powder metal steel alloy composition for high wear and temperature applications is made by water atomizing a molten steel alloy composition containing C in an amount of at least 3.0 wt %; at least one carbide-forming alloy element selected from the group consisting of: Cr, V, Mo or W; an O content less than about 0.5 wt %, and the balance comprising essentially Fe apart from incidental impurities. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming element(s) to oxidixe during water atomization. The alloy elements are thus not tied up as oxides and are available to rapidly and readily form carbides in a subsequent sintering stage. The carbon, present in excess, is also available for diffusing into one or more other admixed powders that may be added to the prealloyed powder during sintering to control microstructure and properties of the final part.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: January 17, 2017
    Assignee: Federal-Mogul Corporation
    Inventors: Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance, Philippe Beaulieu
  • Publication number: 20160001369
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Application
    Filed: September 16, 2015
    Publication date: January 7, 2016
    Inventors: Philippe Beaulieu, Denis B. Christopherson, JR., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance
  • Patent number: 9162285
    Abstract: A powder metal composition for high wear and temperature applications is made by atomizing a melted iron based alloy including 3.0 to 7.0 wt. % carbon; 10.0 to 25.0 wt. % chromium; 1.0 to 5.0 wt. % tungsten; 3.5 to 7.0 wt. % vanadium; 1.0 to 5.0 wt. % molybdenum; not greater than 0.5 wt. % oxygen; and at least 40.0 wt. % iron. The high carbon content reduces the solubility of oxygen in the melt and thus lowers the oxygen content to a level below which would cause the carbide-forming elements to oxidize during atomization. The powder metal composition includes metal carbides in an amount of at least 15 vol. %. The microhardness of the powder metal composition increases with increasing amounts of carbon and is typically about 800 to 1,500 Hv50.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 20, 2015
    Assignees: Federal-Mogul Corporation, La Corporation De L'Ecole Polytechnique De Montreal
    Inventors: Denis B. Christopherson, Jr., Leslie John Farthing, Todd Schoenwetter, Gilles L'Esperance, Philippe Beaulieu
  • Publication number: 20130039796
    Abstract: A master alloy used to produce the steel part and a process for producing a sinter hardened steel part from the master alloy are described. The powdered master alloy having a composition of iron, about 1 to less than 5 weight % C, about 3 to less than 15 weight % Mn, and about 3 to less than 15 weight % Cr, wherein the master alloy comprises a microstructure composed of a solid solution of the alloying elements and carbon, the microstructure comprising at least 10 volume % austenite and the remainder as iron compounds. The process comprises: preparing the master alloy, mixing the master alloy with a steel powder to produce a mixture wherein the weight % of the master alloy is from 5 to 35 weight % of the mixture, compacting the mixture into a shape of a part and sintering the mixture to produce the steel part, and controlling the cooling rate after sintering to produce sinter hardening. The master alloy powder can also be used as a sinter hardening enhancer when mixed with low-alloy steel powders.
    Type: Application
    Filed: February 15, 2011
    Publication date: February 14, 2013
    Inventors: Gilles L'Esperance, Ian Bailon-Poujol, Denis Christopherson, JR.