Patents by Inventor Gillis Otten

Gillis Otten has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11865080
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: January 9, 2024
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11857562
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: January 2, 2024
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Publication number: 20230321132
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Application
    Filed: June 13, 2023
    Publication date: October 12, 2023
    Applicant: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Andrew GEALL, Katrin RAMSAUER, Gillis OTTEN, Christian Walter MANDL
  • Patent number: 11759475
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: September 19, 2023
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11730754
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: August 22, 2023
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11717529
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: August 8, 2023
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11707482
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: July 25, 2023
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11696923
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: July 11, 2023
    Assignee: GlaxoSmithKline Biologicals, SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11690862
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: July 4, 2023
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11690861
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: July 4, 2023
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11690863
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: July 4, 2023
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11690864
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g. by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: July 4, 2023
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Patent number: 11690865
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Grant
    Filed: December 13, 2022
    Date of Patent: July 4, 2023
    Assignee: GlaxoSmithKline Biologicals SA
    Inventors: Andrew Geall, Katrin Ramsauer, Gillis Otten, Christian Walter Mandl
  • Publication number: 20230181618
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g., by a single injection.
    Type: Application
    Filed: December 13, 2022
    Publication date: June 15, 2023
    Applicant: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Andrew GEALL, Katrin RAMSAUER, Gillis OTTEN, Christian Walter MANDL
  • Publication number: 20230117413
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g. by a single injection.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 20, 2023
    Applicant: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Andrew GEALL, Katrin RAMSAUER, Gillis OTTEN, Christian Walter MANDL
  • Publication number: 20230117454
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g. by a single injection.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 20, 2023
    Applicant: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Andrew GEALL, Katrin RAMSAUER, Gillis OTTEN, Christian Walter MANDL
  • Publication number: 20230114029
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g. by a single injection.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Andrew GEALL, Katrin RAMSAUER, Gillis OTTEN, Christian Walter MANDL
  • Publication number: 20230114607
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g. by a single injection.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Andrew GEALL, Katrin RAMSAUER, Gillis OTTEN, Christian Walter MANDL
  • Publication number: 20230112475
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g. by a single injection.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Andrew GEALL, Katrin RAMSAUER, Gillis OTTEN, Christian Walter MANDL
  • Publication number: 20230110963
    Abstract: RNA encoding an immunogen is co-delivered to non-immune cells as the site of delivery and also to immune cells which infiltrate the site of delivery. The responses of these two cell types to the same delivered RNA lead to two different effects, which interact to produce a strong immune response against the immunogen. The non-immune cells translate the RNA and express the immunogen. Infiltrating immune cells respond to the RNA by expressing type I interferons and pro-inflammatory cytokines which produce a local adjuvant effect which acts on the immunogen-expressing non-immune cells to upregulate major histocompatibility complex expression, thereby increasing presentation of the translated protein to T cells. The effects on the immune and non-immune cells can be achieved by a single delivery of a single RNA e.g. by a single injection.
    Type: Application
    Filed: December 13, 2022
    Publication date: April 13, 2023
    Applicant: GLAXOSMITHKLINE BIOLOGICALS SA
    Inventors: Andrew GEALL, Katrin RAMSAUER, Gillis OTTEN, Christian Walter MANDL