Patents by Inventor Gilwoo Choi

Gilwoo Choi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9839399
    Abstract: Systems and methods are disclosed for providing a cardiovascular score for a patient. A method includes receiving, using at least one computer system, patient-specific data regarding a geometry of multiple coronary arteries of the patient; and creating, using at least one computer system, a three-dimensional model representing at least portions of the multiple coronary arteries based on the patient-specific data. The method also includes evaluating, using at least one computer system, multiple characteristics of at least some of the coronary arteries represented by the model; and generating, using at least one computer system, the cardiovascular score based on the evaluation of the multiple characteristics. Another method includes generating the cardiovascular score based on evaluated multiple characteristics for portions of the coronary arteries having fractional flow reserve values of at least a predetermined threshold value.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: December 12, 2017
    Assignee: HeartFlow, Inc.
    Inventors: Timothy A. Fonte, Gilwoo Choi, Jonathan Tang
  • Publication number: 20170340393
    Abstract: Systems and methods are disclosed for predicting coronary plaque vulnerability, using a computer system. One method includes acquiring anatomical image data of at least part of the patient's vascular system; performing, using a processor, one or more image characteristics analysis, geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis on the anatomical image data; predicting, using the processor, a coronary plaque vulnerability present in the patient's vascular system, wherein predicting the coronary plaque vulnerability includes calculating an adverse plaque characteristic based on results of the one or more of image characteristics analysis, geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis of the anatomical image data; and reporting, using the processor, the calculated adverse plaque characteristic.
    Type: Application
    Filed: August 18, 2017
    Publication date: November 30, 2017
    Applicant: HeartFlow, Inc.
    Inventors: Gilwoo CHOI, Leo GRADY, Michiel SCHAAP, Charles TAYLOR
  • Patent number: 9805463
    Abstract: Systems and methods are disclosed for predicting the location, onset, or change of coronary lesions from factors like vessel geometry, physiology, and hemodynamics. One method includes: acquiring, for each of a plurality of individuals, a geometric model, blood flow characteristics, and plaque information for part of the individual's vascular system; training a machine learning algorithm based on the geometric models and blood flow characteristics for each of the plurality of individuals, and features predictive of the presence of plaque within the geometric models and blood flow characteristics of the plurality of individuals; acquiring, for a patient, a geometric model and blood flow characteristics for part of the patient's vascular system; and executing the machine learning algorithm on the patient's geometric model and blood flow characteristics to determine, based on the predictive features, plaque information of the patient for at least one point in the patient's geometric model.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: October 31, 2017
    Assignee: HEARTFLOW, INC.
    Inventors: Gilwoo Choi, Leo Grady, Charles Taylor
  • Patent number: 9785748
    Abstract: Computer-implemented methods are disclosed for estimating values of hemodynamic forces acting on plaque or lesions. One method includes: receiving one or more patient-specific parameters of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion; constructing a patient-specific geometric model of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion, using the received one or more patient-specific parameters; estimating, using one or more processors, the values of hemodynamic forces at one or more points on the patient-specific geometric model, using the patient-specific parameters and geometric model by measuring, deriving, or obtaining one or more of a pressure gradient and a radius gradient; and outputting the estimated values of hemodynamic forces to an electronic storage medium. Systems and computer readable media for executing these methods are also disclosed.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: October 10, 2017
    Assignee: HeartFlow, Inc.
    Inventors: Bon-Kwon Koo, Gilwoo Choi, Hyun Jin Kim, Charles A. Taylor
  • Publication number: 20170281011
    Abstract: Systems and methods are disclosed for determining individual-specific blood flow characteristics. One method includes acquiring, for each of a plurality of individuals, individual-specific anatomic data and blood flow characteristics of at least part of the individual's vascular system; executing a machine learning algorithm on the individual-specific anatomic data and blood flow characteristics for each of the plurality of individuals; relating, based on the executed machine learning algorithm, each individual's individual-specific anatomic data to functional estimates of blood flow characteristics; acquiring, for an individual and individual-specific anatomic data of at least part of the individual's vascular system; and for at least one point in the individual's individual-specific anatomic data, determining a blood flow characteristic of the individual, using relations from the step of relating individual-specific anatomic data to functional estimates of blood flow characteristics.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 5, 2017
    Applicant: HeartFlow, Inc.
    Inventors: Timothy FONTE, Gilwoo CHOI, Leo GRADY, Michael SINGER
  • Patent number: 9770303
    Abstract: Systems and methods are disclosed for predicting coronary plaque vulnerability, using a computer system. One method includes acquiring anatomical image data of at least part of the patient's vascular system; performing, using a processor, one or more image characteristics analysis, geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis on the anatomical image data; predicting, using the processor, a coronary plaque vulnerability present in the patient's vascular system, wherein predicting the coronary plaque vulnerability includes calculating an adverse plaque characteristic based on results of the one or more of image characteristics analysis, geometrical analysis, computational fluid dynamics analysis, and structural mechanics analysis of the anatomical image data; and reporting, using the processor, the calculated adverse plaque characteristic.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: September 26, 2017
    Assignee: HeartFlow, Inc.
    Inventors: Gilwoo Choi, Leo Grady, Michiel Schaap, Charles A. Taylor
  • Publication number: 20170249439
    Abstract: Systems and methods are disclosed for identifying and modeling unresolved vessels, and the effects thereof, in image-based patient-specific hemodynamic models. One method includes: receiving, in an electronic storage medium, one or more patient-specific anatomical models representing at least a vessel of a patient; determining, using a processor, the values and characteristics of one or more patient-specific morphometric features in the one or more patient-specific anatomical models; modifying the patient-specific anatomical model using the determined patient-specific morphometric features; and outputting, one or more of, a modified patient-specific anatomical model or a patient-specific morphometric feature to an electronic storage medium or display.
    Type: Application
    Filed: February 24, 2017
    Publication date: August 31, 2017
    Inventors: Charles A. TAYLOR, Hyun Jin KIM, Leo GRADY, Rhea TOMBROPOULOS, Gilwoo CHOI, Nan XIAO, Buzzy SPAIN
  • Patent number: 9675301
    Abstract: Systems and methods are disclosed for providing a cardiovascular score for a patient. A method includes receiving, using at least one computer system, patient-specific data regarding a geometry of multiple coronary arteries of the patient; and creating, using at least one computer system, a three-dimensional model representing at least portions of the multiple coronary arteries based on the patient-specific data. The method also includes evaluating, using at least one computer system, multiple characteristics of at least some of the coronary arteries represented by the model; and generating, using at least one computer system, the cardiovascular score based on the evaluation of the multiple characteristics. Another method includes generating the cardiovascular score based on evaluated multiple characteristics for portions of the coronary arteries having fractional flow reserve values of at least a predetermined threshold value.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: June 13, 2017
    Assignee: HeartFlow, Inc.
    Inventors: Timothy A. Fonte, Jonathan Tang, Gilwoo Choi
  • Patent number: 9679374
    Abstract: Systems and methods are disclosed for predicting the location, onset, or change of coronary lesions from factors like vessel geometry, physiology, and hemodynamics. One method includes: acquiring, for each of a plurality of individuals, a geometric model, blood flow characteristics, and plaque information for part of the individual's vascular system; training a machine learning algorithm based on the geometric models and blood flow characteristics for each of the plurality of individuals, and features predictive of the presence of plaque within the geometric models and blood flow characteristics of the plurality of individuals; acquiring, for a patient, a geometric model and blood flow characteristics for part of the patient's vascular system; and executing the machine learning algorithm on the patient's geometric model and blood flow characteristics to determine, based on the predictive features, plaque information of the patient for at least one point in the patient's geometric model.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: June 13, 2017
    Assignee: HEARTFLOW, INC.
    Inventors: Gilwoo Choi, Leo Grady, Charles A. Taylor
  • Patent number: 9649171
    Abstract: Systems and methods are disclosed for evaluating a patient with vascular disease. One method includes receiving patient-specific data regarding a geometry of the patient's vasculature; creating an anatomic model representing at least a portion of a location of disease in the patient's vasculature based on the received patient-specific data; identifying one or more changes in geometry of the anatomic model based on a modeled progression or regression of disease at the location; calculating one or more values of a blood flow characteristic within the patient's vasculature using a computational model based on the identified one or more changes in geometry of the anatomic model; and generating an electronic graphical display of a relationship between the one or more values of the calculated blood flow characteristic and the identified one or more changes in geometry of the anatomic model.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: May 16, 2017
    Assignee: HeartFlow, Inc.
    Inventors: Sethuraman Sankaran, Charles A Taylor, Gilwoo Choi, Michiel Schaap, Christopher K. Zarins, Leo J. Grady
  • Publication number: 20170132388
    Abstract: Systems and methods are disclosed herein for anatomical modeling using information obtained during a medical procedure, whereby an initial anatomical model is generated or obtained, a correspondence is determined between the initial model and additional data and/or measurements from an invasive or noninvasive procedure, and, if a discrepancy is found between the initial model and the additional data, the anatomical model is updated to incorporate the additional data and reduce the discrepancy.
    Type: Application
    Filed: November 9, 2016
    Publication date: May 11, 2017
    Inventors: Leo GRADY, Charles A. TAYLOR, Campbell ROGERS, Christopher K. ZARINS, Gilwoo CHOI
  • Publication number: 20170076062
    Abstract: Systems and methods are disclosed for providing personalized chemotherapy and drug delivery using computational fluid dynamics and medical imaging with machine learning from a vascular anatomical model. One method includes receiving a patient-specific anatomical model of at least one vessel of the patient and a target tissue where a drug is to be supplied; receiving patient-specific information defining the administration of a drug; deriving patient-specific data from the patient specific anatomical model and/or the patient; determining one or more blood flow characteristics in a vascular network leading to the one or more locations in the target tissue where drug delivery data will be estimated or measured, using the patient-specific anatomical model and the patient-specific data; and computing drug delivery data at the one or more locations in the target tissue using transportation, spatial, and/or temporal distribution of the drug particles.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 16, 2017
    Inventors: Gilwoo CHOI, Leo GRADY, Charles A. TAYLOR, Stanley C. HUNLEY
  • Patent number: 9585623
    Abstract: Systems and methods are disclosed for providing a cardiovascular score for a patient. A method includes receiving, using at least one computer system, patient-specific data regarding a geometry of multiple coronary arteries of the patient; and creating, using at least one computer system, a three-dimensional model representing at least portions of the multiple coronary arteries based on the patient-specific data. The method also includes evaluating, using at least one computer system, multiple characteristics of at least some of the coronary arteries represented by the model; and generating, using at least one computer system, the cardiovascular score based on the evaluation of the multiple characteristics. Another method includes generating the cardiovascular score based on evaluated multiple characteristics for portions of the coronary arteries having fractional flow reserve values of at least a predetermined threshold value.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: March 7, 2017
    Assignee: HeartFlow, Inc.
    Inventors: Timothy A. Fonte, Gilwoo Choi, Jonathan Tang
  • Publication number: 20170017771
    Abstract: Computer-implemented methods are disclosed for estimating values of hemodynamic forces acting on plaque or lesions. One method includes: receiving one or more patient-specific parameters of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion; constructing a patient-specific geometric model of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion, using the received one or more patient-specific parameters; estimating, using one or more processors, the values of hemodynamic forces at one or more points on the patient-specific geometric model, using the patient-specific parameters and geometric model by measuring, deriving, or obtaining one or more of a pressure gradient and a radius gradient; and outputting the estimated values of hemodynamic forces to an electronic storage medium. Systems and computer readable media for executing these methods are also disclosed.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 19, 2017
    Inventors: Bon-Kwon KOO, Gilwoo CHOI, Hyun Jin KIM, Charles A. TAYLOR
  • Publication number: 20170014033
    Abstract: Computer-implemented methods are disclosed for estimating values of hemodynamic forces acting on plaque or lesions. One method includes: receiving one or more patient-specific parameters of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion; constructing a patient-specific geometric model of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion, using the received one or more patient-specific parameters; estimating, using one or more processors, the values of hemodynamic forces at one or more points on the patient-specific geometric model, using the patient-specific parameters and geometric model by measuring, deriving, or obtaining one or more of a pressure gradient and a radius gradient; and outputting the estimated values of hemodynamic forces to an electronic storage medium. Systems and computer readable media for executing these methods are also disclosed.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 19, 2017
    Inventors: Bon-Kwon KOO, Gilwoo CHOI, Hyun Jin KIM, Charles A. TAYLOR
  • Publication number: 20170014034
    Abstract: Computer-implemented methods are disclosed for estimating values of hemodynamic forces acting on plaque or lesions. One method includes: receiving one or more patient-specific parameters of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion; constructing a patient-specific geometric model of at least a portion of a patient's vasculature that is prone to plaque progression, rupture, or erosion, using the received one or more patient-specific parameters; estimating, using one or more processors, the values of hemodynamic forces at one or more points on the patient-specific geometric model, using the patient-specific parameters and geometric model by measuring, deriving, or obtaining one or more of a pressure gradient and a radius gradient; and outputting the estimated values of hemodynamic forces to an electronic storage medium. Systems and computer readable media for executing these methods are also disclosed.
    Type: Application
    Filed: July 1, 2016
    Publication date: January 19, 2017
    Inventors: Bon-Kwon KOO, Gilwoo CHOI, Hyun Jin KIM, Charles A. TAYLOR
  • Publication number: 20170004280
    Abstract: Systems and methods are disclosed for modeling changes in patient-specific blood vessel geometry and boundary conditions resulting from changes in blood flow or pressure. One method includes determining, using a processor, a first anatomic model of one or more blood vessels of a patient; determining a biomechanical model of the one or more blood vessels based on at least the first anatomic model; determining one or more parameters associated with a physiological state of the patient; and creating a second anatomic model based on the biomechanical model and the one or more parameters associated with the physiological state.
    Type: Application
    Filed: September 14, 2016
    Publication date: January 5, 2017
    Inventors: Charles A. TAYLOR, Hyun Jin KIM, Sethuraman SANKARAN, Michiel SCHAAP, David EBERLE, Gilwoo CHOI, Leo GRADY
  • Publication number: 20160317114
    Abstract: Systems and methods are disclosed for determining individual-specific blood flow characteristics. One method includes acquiring, for each of a plurality of individuals, individual-specific anatomic data and blood flow characteristics of at least part of the individual's vascular system; executing a machine learning algorithm on the individual-specific anatomic data and blood flow characteristics for each of the plurality of individuals; relating, based on the executed machine learning algorithm, each individual's individual-specific anatomic data to functional estimates of blood flow characteristics; acquiring, for an individual and individual-specific anatomic data of at least part of the individual's vascular system; and for at least one point in the individual's individual-specific anatomic data, determining a blood flow characteristic of the individual, using relations from the step of relating individual-specific anatomic data to functional estimates of blood flow characteristics.
    Type: Application
    Filed: July 8, 2016
    Publication date: November 3, 2016
    Inventors: Timothy FONTE, Gilwoo CHOI, Leo GRADY, Michael SINGER
  • Publication number: 20160317046
    Abstract: Systems and methods are disclosed for determining individual-specific blood flow characteristics. One method includes acquiring, for each of a plurality of individuals, individual-specific anatomic data and blood flow characteristics of at least part of the individual's vascular system; executing a machine learning algorithm on the individual-specific anatomic data and blood flow characteristics for each of the plurality of individuals; relating, based on the executed machine learning algorithm, each individual's individual-specific anatomic data to functional estimates of blood flow characteristics; acquiring, for an individual and individual-specific anatomic data of at least part of the individual's vascular system; and for at least one point in the individual's individual-specific anatomic data, determining a blood flow characteristic of the individual, using relations from the step of relating individual-specific anatomic data to functional estimates of blood flow characteristics.
    Type: Application
    Filed: July 8, 2016
    Publication date: November 3, 2016
    Inventors: Timothy FONTE, Gilwoo CHOI, Leo GRADY, Michael SINGER
  • Publication number: 20160321417
    Abstract: Systems and methods are disclosed for determining individual-specific blood flow characteristics. One method includes acquiring, for each of a plurality of individuals, individual-specific anatomic data and blood flow characteristics of at least part of the individual's vascular system; executing a machine learning algorithm on the individual—specific anatomic data and blood flow characteristics for each of the plurality of individuals; relating, based on the executed machine learning algorithm, each individual's individual-specific anatomic data to functional estimates of blood flow characteristics; acquiring, for an individual and individual-specific anatomic data of at least part of the individual's vascular system; and for at least one point in the individual's individual-specific anatomic data, determining a blood flow characteristic of the individual, using relations from the step of relating individual-specific anatomic data to functional estimates of blood flow characteristics.
    Type: Application
    Filed: July 8, 2016
    Publication date: November 3, 2016
    Inventors: Timothy FONTE, Gilwoo CHOI, Leo GRADY, Michael SINGER