Patents by Inventor Ginel C. Hill

Ginel C. Hill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12218647
    Abstract: A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
    Type: Grant
    Filed: January 15, 2024
    Date of Patent: February 4, 2025
    Assignee: SiTime Corporation
    Inventors: Joseph C. Doll, Nicholas Miller, Charles I. Grosjean, Paul M. Hagelin, Ginel C. Hill
  • Publication number: 20250007492
    Abstract: A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
    Type: Application
    Filed: January 15, 2024
    Publication date: January 2, 2025
    Inventors: Joseph C. Doll, Nicholas Miller, Charles I. Grosjean, Paul M. Hagelin, Ginel C. Hill
  • Patent number: 12166464
    Abstract: A microelectromechanical system (MEMS) resonator includes a degenerately-doped single-crystal silicon layer and a piezoelectric material layer disposed on the degenerately-doped single-crystal silicon layer. An electrically-conductive material layer is disposed on the piezoelectric material layer opposite the degenerately-doped single-crystal silicon layer, and patterned to form first and second electrodes.
    Type: Grant
    Filed: January 2, 2024
    Date of Patent: December 10, 2024
    Assignee: SITIME CORPORATION
    Inventors: Joseph C. Doll, Paul M. Hagelin, Ginel C. Hill, Nicholas Miller, Charles I. Grosjean
  • Patent number: 12095447
    Abstract: A microelectromechanical system (MEMS) resonator includes a substrate having a substantially planar surface and a resonant member having sidewalls disposed in a nominally perpendicular orientation with respect to the planar surface. Impurity dopant is introduced via the sidewalls of the resonant member such that a non-uniform dopant concentration profile is established along axis extending between the sidewalls parallel to the substrate surface and exhibits a relative minimum concentration in a middle region of the axis.
    Type: Grant
    Filed: October 3, 2019
    Date of Patent: September 17, 2024
    Inventors: Charles I. Grosjean, Ginel C. Hill, Paul M. Hagelin, Renata Melamud Berger, Aaron Partridge, Markus Lutz
  • Publication number: 20240223151
    Abstract: A microelectromechanical system (MEMS) resonator includes a degenerately-doped single-crystal silicon layer and a piezoelectric material layer disposed on the degenerately-doped single-crystal silicon layer. An electrically-conductive material layer is disposed on the piezoelectric material layer opposite the degenerately-doped single-crystal silicon layer, and patterned to form first and second electrodes.
    Type: Application
    Filed: January 2, 2024
    Publication date: July 4, 2024
    Inventors: Joseph C. Doll, Paul M. Hagelin, Ginel C. Hill, Nicholas Miller, Charles I. Grosjean
  • Patent number: 11975965
    Abstract: Multiple degenerately-doped silicon layers are implemented within resonant structures to control multiple orders of temperature coefficients of frequency.
    Type: Grant
    Filed: June 23, 2023
    Date of Patent: May 7, 2024
    Assignee: SiTime Corporation
    Inventors: Charles I. Grosjean, Nicholas Miller, Paul M. Hagelin, Ginel C. Hill, Joseph C. Doll
  • Patent number: 11916534
    Abstract: A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
    Type: Grant
    Filed: June 23, 2022
    Date of Patent: February 27, 2024
    Assignee: SiTime Corporation
    Inventors: Joseph C. Doll, Nicholas Miller, Charles I. Grosjean, Paul M. Hagelin, Ginel C. Hill
  • Patent number: 11909376
    Abstract: A microelectromechanical system (MEMS) resonator includes a degenerately-doped single-crystal silicon layer and a piezoelectric material layer disposed on the degenerately-doped single-crystal silicon layer. An electrically-conductive material layer is disposed on the piezoelectric material layer opposite the degenerately-doped single-crystal silicon layer, and patterned to form first and second electrodes.
    Type: Grant
    Filed: December 8, 2020
    Date of Patent: February 20, 2024
    Assignee: SITIME CORPORATION
    Inventors: Joseph C. Doll, Paul M. Hagelin, Ginel C. Hill, Nicholas Miller, Charles I. Grosjean
  • Publication number: 20240056054
    Abstract: A microelectromechanical system (MEMS) resonator includes a substrate having a substantially planar surface and a resonant member having sidewalls disposed in a nominally perpendicular orientation with respect to the planar surface. Impurity dopant is introduced via the sidewalls of the resonant member such that a non-uniform dopant concentration profile is established along axis extending between the sidewalls parallel to the substrate surface and exhibits a relative minimum concentration in a middle region of the axis.
    Type: Application
    Filed: August 14, 2023
    Publication date: February 15, 2024
    Inventors: Charles I. Grosjean, Ginel C. Hill, Paul M. Hagelin, Renata Melamud Berger, Aaron Patridge, Markus Lutz
  • Patent number: 11897757
    Abstract: The present inventions, in one aspect, are directed to micromachined resonator comprising: a first resonant structure extending along a first axis, wherein the first axis is different from a crystal axis of silicon, a second resonant structure extending along a second axis, wherein the second axis is different from the first axis and the crystal axis of silicon and wherein the first resonant structure is coupled to the second resonant structure, and wherein the first and second resonant structures are comprised of silicon (for example, substantially monocrystalline) and include an impurity dopant (for example, phosphorus) having a concentrations which is greater than 1019 cm?3, and preferably between 1019 cm?3 and 1021 cm?3.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: February 13, 2024
    Assignee: SiTime Corporation
    Inventors: Renata M. Berger, Ginel C. Hill, Paul M. Hagelin, Charles I. Grosjean, Aaron Partridge, Joseph C. Doll, Markus Lutz
  • Publication number: 20230416081
    Abstract: Multiple degenerately-doped silicon layers are implemented within resonant structures to control multiple orders of temperature coefficients of frequency.
    Type: Application
    Filed: June 23, 2023
    Publication date: December 28, 2023
    Inventors: Charles I. Grosjean, Nicholas Miller, Paul M. Hagelin, Ginel C. Hill, Joseph C. Doll
  • Patent number: 11807518
    Abstract: The present inventions, in one aspect, are directed to micromachined resonator comprising: a first resonant structure extending along a first axis, wherein the first axis is different from a crystal axis of silicon, a second resonant structure extending along a second axis, wherein the second axis is different from the first axis and the crystal axis of silicon and wherein the first resonant structure is coupled to the second resonant structure, and wherein the first and second resonant structures are comprised of silicon (for example, substantially monocrystalline) and include an impurity dopant (for example, phosphorus) having a concentrations which is greater than 1019 cm-3, and preferably between 1019 cm-3 and 1021 cm-3.
    Type: Grant
    Filed: June 19, 2017
    Date of Patent: November 7, 2023
    Assignee: SiTime Corporation
    Inventors: Renata M. Berger, Ginel C. Hill, Paul M. Hagelin, Charles I. Grosjean, Aaron Partridge, Joseph C. Doll, Markus Lutz
  • Patent number: 11770112
    Abstract: A microelectromechanical system (MEMS) resonator includes a substrate having a substantially planar surface and a resonant member having sidewalls disposed in a nominally perpendicular orientation with respect to the planar surface. Impurity dopant is introduced via the sidewalls of the resonant member such that a non-uniform dopant concentration profile is established along axis extending between the sidewalls parallel to the substrate surface and exhibits a relative minimum concentration in a middle region of the axis.
    Type: Grant
    Filed: March 10, 2021
    Date of Patent: September 26, 2023
    Assignee: SiTime Corporation
    Inventors: Charles I. Grosjean, Ginel C. Hill, Paul M. Hagelin, Renata Melamud Berger, Aaron Partridge, Markus Lutz
  • Patent number: 11731869
    Abstract: A MEMS element within a semiconductor device is enclosed within a cavity bounded at least in part by hydrogen-permeable material. A hydrogen barrier is formed within the semiconductor device to block propagation of hydrogen into the cavity via the hydrogen-permeable material.
    Type: Grant
    Filed: December 24, 2021
    Date of Patent: August 22, 2023
    Assignee: SiTime Corporation
    Inventors: Charles I. Grosjean, Paul M. Hagelin, Michael Julian Daneman, Ginel C. Hill, Aaron Partridge
  • Patent number: 11724934
    Abstract: Multiple degenerately-doped silicon layers are implemented within resonant structures to control multiple orders of temperature coefficients of frequency.
    Type: Grant
    Filed: November 30, 2022
    Date of Patent: August 15, 2023
    Assignee: SiTime Corporation
    Inventors: Charles I. Grosjean, Nicholas Miller, Paul M. Hagelin, Ginel C. Hill, Joseph C. Doll
  • Patent number: 11718518
    Abstract: A MEMS element within a semiconductor device is enclosed within a cavity bounded at least in part by hydrogen-permeable material. A hydrogen barrier is formed within the semiconductor device to block propagation of hydrogen into the cavity via the hydrogen-permeable material.
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: August 8, 2023
    Assignee: SiTime Corporation
    Inventors: Charles I. Grosjean, Paul M. Hagelin, Michael Julian Daneman, Ginel C. Hill, Aaron Partridge
  • Publication number: 20230183060
    Abstract: Multiple degenerately-doped silicon layers are implemented within resonant structures to control multiple orders of temperature coefficients of frequency.
    Type: Application
    Filed: November 30, 2022
    Publication date: June 15, 2023
    Inventors: Charles I. Grosjean, Nicholas Miller, Paul M. Hagelin, Ginel C. Hill, Joseph C. Doll
  • Patent number: 11677379
    Abstract: A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
    Type: Grant
    Filed: December 7, 2021
    Date of Patent: June 13, 2023
    Assignee: SiTime Corporation
    Inventors: Joseph C. Doll, Nicholas Miller, Charles I. Grosjean, Paul M. Hagelin, Ginel C. Hill
  • Patent number: 11584642
    Abstract: Multiple degenerately-doped silicon layers are implemented within resonant structures to control multiple orders of temperature coefficients of frequency.
    Type: Grant
    Filed: April 29, 2020
    Date of Patent: February 21, 2023
    Assignee: SiTime Corporation
    Inventors: Charles I. Grosjean, Nicholas Miller, Paul M. Hagelin, Ginel C. Hill, Joseph C. Doll
  • Publication number: 20220337218
    Abstract: A moveable micromachined member of a microelectromechanical system (MEMS) device includes an insulating layer disposed between first and second electrically conductive layers. First and second mechanical structures secure the moveable micromachined member to a substrate of the MEMS device and include respective first and second electrical interconnect layers coupled in series, with the first electrically conductive layer of the moveable micromachined member and each other, between first and second electrical terminals to enable conduction of a first joule-heating current from the first electrical terminal to the second electrical terminal through the first electrically conductive layer of the moveable micromachined member.
    Type: Application
    Filed: June 23, 2022
    Publication date: October 20, 2022
    Inventors: Joseph C. Doll, Nicholas Miller, Charles I. Grosjean, Paul M. Hagelin, Ginel C. Hill