Patents by Inventor Gino Cuglietta

Gino Cuglietta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8402789
    Abstract: A method of producing a thermally stable grating allows the grating to be placed in environments where temperatures reach 1000° C. These gratings may be concatenated so as to form a sensor array. The method requires a step of lowering the characteristic intensity threshold of a waveguide by at least 25%, followed by irradiating the waveguide with femtosecond pulses of light having a sufficient intensity and for a sufficient duration to write the grating so that at least 60% of the grating remains after exposures of at least 10 hours at a temperature of at least 1000° C. Pre-writing a Type I grating before writing a minimal damage Type II grating lowers the characteristic threshold of the waveguide so that a stable low damage type II grating can be written; alternatively providing a hydrogen or deuterium loaded waveguide before writing the grating lowers the characteristic threshold of the waveguide.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: March 26, 2013
    Assignee: Her Majesty the Queen in Right of Canada, as Represented by the Minister of Industry, Through the Communications Research Centre Canada
    Inventors: Christopher W. Smelser, Stephen J. Mihailov, Dan Grobnic, Ping Lu, Robert B. Walker, Gino Cuglietta, Huimin Ding, Xiaoli Dai
  • Publication number: 20120324959
    Abstract: A method of producing a thermally stable grating allows the grating to be placed in environments where temperatures reach 1000° C. These gratings may be concatenated so as to form a sensor array. The method requires a step of lowering the characteristic intensity threshold of a waveguide by at least 25%, followed by irradiating the waveguide with femtosecond pulses of light having a sufficient intensity and for a sufficient duration to write the grating so that at least 60% of the grating remains after exposures of at least 10 hours at a temperature of at least 1000° C. Pre-writing a Type I grating before writing a minimal damage Type II grating lowers the characteristic threshold of the waveguide so that a stable low damage type II grating can be written; alternatively providing a hydrogen or deuterium loaded waveguide before writing the grating lowers the characteristic threshold of the waveguide.
    Type: Application
    Filed: August 23, 2012
    Publication date: December 27, 2012
    Applicants: the Communications Research Centre Canada
    Inventors: Christopher W. Smelser, Stephen J. Mihailov, Dan Grobnic, Ping Lu, Robert B. Walker, Gino Cuglietta, Huimin Ding, Xiaoli Dai
  • Patent number: 8272236
    Abstract: A method of producing a thermally stable grating allows the grating to be placed in environments where temperatures reach 1000° C. and where the grating is relatively stable and has very low loss from scatter. These gratings have spectral characteristics that allow them to be concatenated so as to form a sensor array. The method requires a step of lowering the characteristic intensity threshold of a waveguide by at least 25%, followed by irradiating the waveguide with femtosecond pulses of light having a sufficient intensity and for a sufficient duration to write the grating so that at least 60% of the grating remains after exposures of at least 10 hours at a temperature of at least 1000° C.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: September 25, 2012
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, through the Communications Research Centre Canada
    Inventors: Christopher W. Smelser, Stephen J. Mihailov, Dan Grobnic, Ping Lu, Robert B. Walker, Gino Cuglietta, Haimin Ding, Xiaoli Dai
  • Patent number: 7689087
    Abstract: A method of inducing birefringence in an optical waveguide is disclosed wherein the waveguide cladding is irradiated with energy of a sufficient intensity so as to induce a stress in the optical waveguide so as to cause a multitude of spaced stress induced regions within the cladding of the optical waveguide such that there are 10 to 5000 spaced regions per mm and wherein the stress induced regions are proximate the core greater than 2 microns distance from the core-cladding interface. This waveguide has numerous uses, for example a fiber sensor.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: March 30, 2010
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, Through the Communications Research Centre Canada
    Inventors: Stephen J. Mihailov, Dan Grobnic, Christopher W. Smelser, Robert B. Walker, Ping Lu, Xiaoli Dai, Huimin Ding, Gino Cuglietta
  • Publication number: 20090317928
    Abstract: A method of producing a thermally stable grating allows the grating to be placed in environments where temperatures reach 1000° C. and where the grating is relatively stable and has very low loss from scatter. These gratings have spectral characteristics that allow them to be concatenated so as to form a sensor array. The method requires a step of lowering the characteristic intensity threshold of a waveguide by at least 25%, followed by irradiating the waveguide with femtosecond pulses of light having a sufficient intensity and for a sufficient duration to write the grating so that at least 60% of the grating remains after exposures of at least 10 hours at a temperature of at least 1000° C.
    Type: Application
    Filed: June 18, 2009
    Publication date: December 24, 2009
    Inventors: Christopher W. Smelser, Stephen J. Mihailov, Dan Grobnic, Ping Lu, Robert B. Walker, Gino Cuglietta, Haimin Ding, Xiaoli Dai
  • Patent number: 7567734
    Abstract: An optical sensor for sensing information relating to an analyte liquid or gas, has a a planar substrate having a refractive index nc. The planar substrate supports a ridge waveguide having an unclad top portion having a refractive index nr. The substrate serves as cladding layer for the ridge waveguide at a location where the ridge waveguide contacts the substrate. A Bragg grating inscribed in the ridge waveguide has two modes for providing information relating to both temperature and refractive index of the surrounding analyte liquid or gas. A cladding mode has a different response to the analyte when compared to a Bragg resonance response. Both modes have a same reaction to temperature, wherein said Bragg grating is formed within the unclad region of ridge waveguide, wherein nc.<nr. Advantageously multiple parameters can be sensed using only a single Bragg grating.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: July 28, 2009
    Assignee: Her Majesty the Queen in right of Canada, as represented by the Minister of Industry, through the Communications Research Centre Canada
    Inventors: Xiaoli Dai, Stephen J. Mihailov, Robert B. Walker, Chantal Blanchetiere, Claire Callender, Huimin Ding, Ping Lu, Dan Grobnic, Christopher W. Smelser, Gino Cuglietta
  • Patent number: 7515792
    Abstract: A method of increasing the refractive index in a photosensitive glass is disclosed so as to induce an refractive index change of at least 10?5 within a region of the glass. The method includes the step of providing a hydrogen or deuterium loaded doped glass material wherein a dopant within the glass is photosensitive to infrared radiation in the presence of hydrogen or deuterium. The hydrogen or deuterium loaded doped glass is subsequently irradiated with femtosecond pulses of infrared light having an intensity of at least 109 W/cm2 and less than 5×1013 W/cm2.
    Type: Grant
    Filed: March 7, 2007
    Date of Patent: April 7, 2009
    Assignee: Her Majesty the Queen in Right of Canada as Represented by the Minister of Industry, Through the Communications Research Centre Canada
    Inventors: Stephen J. Mihailov, Christopher W. Smelser, Dan Grobnic, Robert B. Walker, Ping Lu, Huimin Ding, Gino Cuglietta, Xiaoli Dai
  • Publication number: 20090041405
    Abstract: An optical sensor for sensing information relating to an analyte liquid or gas, has a a planar substrate having a refractive index nc. The planar substrate supports a ridge waveguide having an unclad top portion having a refractive index nr. The substrate serves as cladding layer for the ridge waveguide at a location where the ridge waveguide contacts the substrate. A Bragg grating inscribed in the ridge waveguide has two modes for providing information relating to both temperature and refractive index of the surrounding analyte liquid or gas. A cladding mode has a different response to the analyte when compared to a Bragg resonance response. Both modes have a same reaction to temperature, wherein said Bragg grating is formed within the unclad region of ridge waveguide, wherein nc<nr. Advantageously multiple parameters can be sensed using only a single Bragg grating.
    Type: Application
    Filed: August 8, 2008
    Publication date: February 12, 2009
    Inventors: Xiaoli Dai, Stephen J. Mihailov, Robert B. Walker, Chantal Blanchetiere, Claire Callender, Huimin Ding, Ping Lu, Dan Grobnic, Christopher W. Smelser, Gino Cuglietta
  • Patent number: 7483615
    Abstract: Fiber Bragg gratings were written in pure silica photonic crystal fibers and photonic crystal fiber tapers with 125 fs, 800 nm IR radiation. High reflectivites were achieved with short exposure times in the tapers. Both multimode and single mode grating reflections were achieved in the fiber tapers. By tapering the photonic crystal fibers scattering that would otherwise have occurred was lessened and light external to the fiber could reach the core effectively to write a grating.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: January 27, 2009
    Assignee: Her Majesty the Queen in Right of Canada as represented by the Minister of Industry, through the Communications Research Centre Canada
    Inventors: Stephen J. Mihailov, Dan Grobnic, Huimin Ding, Robert B. Walker, Christopher W. Smelser, Ping Lu, Xiaoli Dai, Gino Cuglietta
  • Publication number: 20080310789
    Abstract: A method of inducing birefringence in an optical waveguide is disclosed wherein the waveguide cladding is irradiated with energy of a sufficient intensity so as to induce a stress in the optical waveguide so as to cause a multitude of spaced stress induced regions within the cladding of the optical waveguide such that there are 10 to 5000 spaced regions per mm and wherein the stress induced regions are proximate the core greater than 2 microns distance from the core-cladding interface. This waveguide has numerous uses, for example a fiber sensor.
    Type: Application
    Filed: July 9, 2008
    Publication date: December 18, 2008
    Inventors: Stephen J. Mihailov, Dan Grobnic, Christopher W. Smelser, Robert B. Walker, Ping Lu, Xiaoli Dai, Huimin Ding, Gino Cuglietta
  • Publication number: 20070201802
    Abstract: Fiber Bragg gratings were written in pure silica photonic crystal fibers and photonic crystal fiber tapers with 125 fs, 800 nm IR radiation. High reflectivites were achieved with short exposure times in the tapers. Both multimode and single mode grating reflections were achieved in the fiber tapers. By tapering the photonic crystal fibers scattering that would otherwise have occurred was lessened and light external to the fiber could reach the core effectively to write a grating.
    Type: Application
    Filed: February 26, 2007
    Publication date: August 30, 2007
    Inventors: Stephen J. Mihailov, Dan Grobnic, Huimin Ding, Robert B. Walker, Christopher W. Smelser, Ping Lu, Xiaoli Dai, Gino Cuglietta
  • Publication number: 20070154143
    Abstract: A method of increasing the refractive index in a photosensitive glass is disclosed so as to induce an refractive index change of at least 10?5 within a region of the glass. The method includes the step of providing a hydrogen or deuterium loaded doped glass material wherein a dopant within the glass is photosensitive to infrared radiation in the presence of hydrogen or deuterium. The hydrogen or deuterium loaded doped glass is subsequently irradiated with femtosecond pulses of infrared light having an intensity of at least 109 W/cm2 and less than 5×1013 W/cm2.
    Type: Application
    Filed: March 7, 2007
    Publication date: July 5, 2007
    Inventors: Stephen Mihailov, Christopher Smelser, Dan Grobnic, Robert Walker, Ping Lu, Huimin Ding, Gino Cuglietta, Xiaoli Dai