Patents by Inventor Gino L. PITERA

Gino L. PITERA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12224184
    Abstract: A method includes placing an electronic device on a pliable mating surface on a major surface of a mold such that at least one contact pad on the electronic device presses against the pliable mating surface. The pliable mating surface is on a microstructure in an arrangement of microstructures on the major surface of the mold. A liquid encapsulant material is applied over the electronic device and the major surface of the mold, and then hardened to form a carrier for the electronic device. The mold and the carrier are separated such that the microstructures on the mold form a corresponding arrangement of microchannels in the carrier, and at least one contact pad on the electronic device is exposed in a microchannel in the arrangement of microchannels. A conductive particle-containing liquid is deposited in the microchannel, which directly contacts the contact pad exposed in the microchannel.
    Type: Grant
    Filed: May 1, 2024
    Date of Patent: February 11, 2025
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Kayla C. Niccum, Kara A. Meyers, Matthew R. D. Smith, Gino L. Pitera, Graham M. Clarke, Jeremy K. Larsen, Teresa M. Goeddel
  • Publication number: 20240282592
    Abstract: A method includes placing an electronic device on a pliable mating surface on a major surface of a mold such that at least one contact pad on the electronic device presses against the pliable mating surface. The pliable mating surface is on a microstructure in an arrangement of microstructures on the major surface of the mold. A liquid encapsulant material is applied over the electronic device and the major surface of the mold, and then hardened to form a carrier for the electronic device. The mold and the carrier are separated such that the microstructures on the mold form a corresponding arrangement of microchannels in the carrier, and at least one contact pad on the electronic device is exposed in a microchannel in the arrangement of microchannels. A conductive particle-containing liquid is deposited in the microchannel, which directly contacts the contact pad exposed in the microchannel.
    Type: Application
    Filed: May 1, 2024
    Publication date: August 22, 2024
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Kayla C. Niccum, Kara A. Meyers, Matthew R.D. Smith, Gino L. Pitera, Graham M. Clarke, Jeremy K. Larsen, Teresa M. Goeddel
  • Patent number: 12020951
    Abstract: A method includes placing an electronic device on a pliable mating surface on a major surface of a mold such that at least one contact pad on the electronic device presses against the pliable mating surface. The pliable mating surface is on a microstructure in an arrangement of microstructures on the major surface of the mold. A liquid encapsulant material is applied over the electronic device and the major surface of the mold, and then hardened to form a carrier for the electronic device. The mold and the carrier are separated such that the microstructures on the mold form a corresponding arrangement of microchannels in the carrier, and at least one contact pad on the electronic device is exposed in a microchannel in the arrangement of microchannels. A conductive particle-containing liquid is deposited in the microchannel, which directly contacts the contact pad exposed in the microchannel.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: June 25, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Kayla C. Niccum, Kara A. Meyers, Matthew R. D. Smith, Gino L. Pitera, Graham M. Clarke, Jeremy K. Larsen, Teresa M. Goeddel
  • Patent number: 11996380
    Abstract: An article includes a solid circuit die on a first major surface of a substrate, wherein the solid circuit die includes an arrangement of contact pads, and wherein at least a portion of the contact pads in the arrangement of contact pads are at least partially exposed on the first major surface of the substrate to provide an arrangement of exposed contact pads; a guide layer including an arrangement of microchannels, wherein the guide layer contacts the first major surface of the substrate such that at least some microchannels in the arrangement of microchannels overlie the at least some exposed contact pads in the arrangement of exposed contact pads; and a conductive particle-containing liquid in at least some of the microchannels. Other articles and methods of manufacturing the articles are described.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: May 28, 2024
    Assignee: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Ankit Mahajan, Saagar A. Shah, Daniel B. Taylor, Mikhail L. Pekurovsky, Kara A. Meyers, Kayla C. Niccum, David J. Rowe, Gino L. Pitera
  • Publication number: 20220189790
    Abstract: A method includes placing an electronic device on a pliable mating surface on a major surface of a mold such that at least one contact pad on the electronic device presses against the pliable mating surface. The pliable mating surface is on a microstructure in an arrangement of microstructures on the major surface of the mold. A liquid encapsulant material is applied over the electronic device and the major surface of the mold, and then hardened to form a carrier for the electronic device. The mold and the carrier are separated such that the microstructures on the mold form a corresponding arrangement of microchannels in the carrier, and at least one contact pad on the electronic device is exposed in a microchannel in the arrangement of microchannels. A conductive particle-containing liquid is deposited in the microchannel, which directly contacts the contact pad exposed in the microchannel.
    Type: Application
    Filed: April 14, 2020
    Publication date: June 16, 2022
    Inventors: Ankit Mahajan, Saagar A. Shah, Mikhail L. Pekurovsky, Kayla C. Niccum, Kara A. Meyers, Matthew R.D. Smith, Gino L. Pitera, Graham M. Clarke, Jeremy K. Larsen, Teresa M. Goeddel
  • Publication number: 20220037278
    Abstract: An article includes a solid circuit die on a first major surface of a substrate, wherein the solid circuit die includes an arrangement of contact pads, and wherein at least a portion of the contact pads in the arrangement of contact pads are at least partially exposed on the first major surface of the substrate to provide an arrangement of exposed contact pads; a guide layer including an arrangement of microchannels, wherein the guide layer contacts the first major surface of the substrate such that at least some microchannels in the arrangement of microchannels overlie the at least some exposed contact pads in the arrangement of exposed contact pads; and a conductive particle-containing liquid in at least some of the microchannels. Other articles and methods of manufacturing the articles are described.
    Type: Application
    Filed: December 23, 2019
    Publication date: February 3, 2022
    Inventors: Ankit Mahajan, Saagar A. Shah, Daniel B. Taylor, Mikhail L. Pekurovsky, Kara A. Meyers, Kayla C. Niccum, David J. Rowe, Gino L. Pitera
  • Publication number: 20200030486
    Abstract: A method of forming a fibrin hydrogel composition including providing one or more unitary masses of a fibrin hydrogel, dividing at least one of the unitary masses of the fibrin hydrogel into a multiplicity of smaller pieces of the fibrin hydrogel, and recombining at least a portion of the smaller pieces into a cohesive mass. Dividing at least one of the unitary masses of fibrin hydrogel into a multiplicity of smaller pieces may include shearing or cutting the unitary masses to form an aqueous dispersion of the fibrin hydrogel in an aqueous medium. The aqueous dispersion of fibrin hydrogel may be applied to a substrate on a roller or an endless belt, and is optionally overlaid by a scrim. The cohesive mass of fibrin hydrogel, which may be formed by removing at least a portion of the aqueous medium from the aqueous dispersion of the smaller pieces of the fibrin hydrogel, finds uses in wound dressing articles.
    Type: Application
    Filed: October 3, 2017
    Publication date: January 30, 2020
    Inventors: Jonathan J. O'HARE, Mikhail L. PEKUROVSKY, Amy S. DETERMAN, Gino L. PITERA, Jason W. BJORK, Daniel V. NORTON, Robert A. ASMUS