Patents by Inventor Gino Palumbo

Gino Palumbo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060160636
    Abstract: A sports article includes a portion that includes a nanostructured material. The nanostructured material includes a metal, and the nanostructured material has an average grain size that is in the range of 2 nm to 5,000 nm, a yield strength that is in the range of 200 MPa to 2,750 MPa, and a hardness that is in the range of 100 Vickers to 2,000 Vickers. The sports article can be any of a variety of sports equipment and associated components, such as a golf club, a baseball bat, a softball bat, a lacrosse stick, or a hockey stick.
    Type: Application
    Filed: December 16, 2005
    Publication date: July 20, 2006
    Inventors: Gino Palumbo, William Davidson, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb
  • Publication number: 20060135281
    Abstract: Articles for automotive, manufacturing and industrial applications including shafts or tubes used, for example, as golf club shafts, ski and hiking poles, fishing rods or bicycle frames, skate blades and snowboards are at least partially electroplated with fine-grained layers of selected metallic materials. Parts with complex geometry can be coated as well. Alternatively, articles such as conical or cylindrical golf club shafts, hiking pole shafts or fishing pole sections, plates or foils and the like can also be electroformed of fine-grained metallic materials on a suitable mandrel or temporary substrate to produce strong, ductile, lightweight components exhibiting a high coefficient of restitution and a high stiffness for use in numerous applications including sporting goods.
    Type: Application
    Filed: December 17, 2004
    Publication date: June 22, 2006
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Gino Palumbo, Iain Brooks, Konstantinos Panagiotopoulos, Klaus Tomantschger, Jonathan McCrea, David Limoges, Uwe Erb
  • Publication number: 20060135282
    Abstract: Lightweight articles comprising a polymeric material at least partially coated with a fine-grained metallic material are disclosed. The fine-grained metallic material has an average grain size of 2 nm to 5,000 nm, a thickness between 25 micron and 5 cm, and a hardness between 200 VHN and 3,000 VHN. The lightweight articles are strong and ductile and exhibit high coefficients of restitution and a high stiffness and are particularly suitable for a variety of applications including aerospace and automotive parts, sporting goods, and the like.
    Type: Application
    Filed: December 15, 2005
    Publication date: June 22, 2006
    Applicant: Integran Technologies, Inc.
    Inventors: Gino Palumbo, Jonathan McCrea, Klaus Tomantschger, Iain Brooks, Daehyun Jeong, Dave Limoges, Konstantinos Panagiotopoulos, Uwe Erb, Andrew Wang
  • Publication number: 20050205425
    Abstract: The invention relates to a process for forming coatings or free-standing deposits of nano-crystalline metals, metal alloys or metal matrix composites. The process employs drum plating or selective plating processes involving pulse electrode-position and a non-stationary anode or cathode. Novel nano-crystalline metal matrix composites and micro components are disclosed as well. Also described is a process for forming micro-components with grain sizes below 1,000 nm.
    Type: Application
    Filed: June 25, 2002
    Publication date: September 22, 2005
    Applicant: Integran Technologies
    Inventors: Gino Palumbo, Iain Brooks, Jonathan McCrea, Glenn Hibbard, Francisco Gonzalez, Klaus Tomantschger, Uwe Erb
  • Patent number: 6802917
    Abstract: A process for enhancing chemical stability and corrosion resistance is described for perforated current collectors made by continuous production processes for use in electrochemical cells, including storage batteries such as lead-acid batteries. The process relies on utilizing a strip processing method, selected from the group of reciprocating expansion, rotary expansion and punching, to perforate the solid metal strip to form a grid or mesh, as a deformation treatment. The perforation-deformation treatment is followed in rapid succession by a heat-treatment to obtain a recrystallized microstructure in the current collector and optionally by quenching to rapidly reduce the temperature to below approximately 80° C. The process yields an improved microstructure consisting of a high frequency of special low &Sgr; CSL grain boundaries (>50%), exhibiting significantly improved resistance to intergranular corrosion and cracking.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: October 12, 2004
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, David L. Limoges, Peter K. Lin, Gino Palumbo
  • Publication number: 20040112486
    Abstract: Recrystallized lead and lead alloy positive current collectors and connectors such as straps and lugs for use e.g. in lead acid batteries and electrowinning anodes, having an increased percentage of special grain boundaries in at least part of the microstructure, which have been provided by a process comprising of (i) cold or hot rolling or cold or hot extrusion or (ii) steps of deforming the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided.
    Type: Application
    Filed: November 20, 2003
    Publication date: June 17, 2004
    Inventors: Karl T. Aust, David L. Limoges, Francisco Gonzalez, Gino Palumbo, Klaus Tomantschger, Peter K. Lin
  • Publication number: 20030234181
    Abstract: A process for in situ electroforming a structural reinforcing layer of selected metallic material for repairing an external surface area of a degraded section of metallic workpieces, especially of tubes and tube sections, is described. Preferably, the metal layer coatings are made of fine-grained metals, metal alloys or metal matrix composites. The plating system can be used on straight tubes, tube joints to different diameter tubes or face plates, tube elbows and other complex shapes encountered in piping systems. A suitable apparatus is assembled on or near the degraded site and is sealed in place to form the plating cell. Also described is a process for plating “patches” onto degraded areas by selective plating including brush plating.
    Type: Application
    Filed: October 24, 2002
    Publication date: December 25, 2003
    Inventors: Gino Palumbo, Iain Brooks, Andrew J. Robertson, Konstantinos Panagiotopoulos, Francisco Gonzalez, Klaus Tomantschger
  • Patent number: 6610154
    Abstract: A surface treatment process for enhancing the resistance to intergranular corrosion and intergranular cracking of components fabricated from austenitic Ni—Fe—Cr based alloys comprising the application of surface deformation to the component, to a depth in the range of 0.01 mm to 0.5 mm, for example by high intensity shot peening below the recrystallization temperature, followed by recrystallization heat treatment, preferably at solutionizing temperatures. The surface deformation and annealing process can be repeated to further optimize the microstructure of the near-surface region. Following the final heat treatment, the process optionally comprises the application of further surface deformation (work) of reduced intensity, yielding a worked depth of between 0.005 mm to 0.01 mm, to impart residual compression in the near surface region to further enhance cracking resistance.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: August 26, 2003
    Assignee: Integran Technologies Inc.
    Inventors: David L. Limoges, Gino Palumbo, Peter K. Lin
  • Patent number: 6592686
    Abstract: Recrystallized lead and lead alloy positive electrodes for lead acid batteries having an increased percentage of special grain boundaries in the microstructure, preferably to at least 50%, which have been provided by a process comprising steps of working or straining the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided. The amount of cold work or strain, the recrystallization time and temperature, and the number of repetitions of such steps are selected to ensure that a substantial increase in the population of special grain boundaries is provided in the microstructure, to improve resistance to creep, intergranular corrosion and intergranular cracking of the electrodes during battery service, and result in extended battery life and the opportunity to reduce the size and weight of the battery.
    Type: Grant
    Filed: August 24, 2001
    Date of Patent: July 15, 2003
    Assignee: Integran Technologies Inc.
    Inventor: Gino Palumbo
  • Patent number: 6589298
    Abstract: A process for enhancing chemical stability, corrosion resistance and for improved adhesion characteristics is described for use on metal or metal-alloy non-consumable electrodes, current collectors or other metallic articles used in electrochemical cells. The process includes peening of the article, optionally followed by an annealing treatment.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: July 8, 2003
    Assignee: Integran Technologies, Inc.
    Inventors: David L. Limoges, Gino Palumbo, Peter K. Lin, Klaus Tomantschger
  • Publication number: 20020088515
    Abstract: Recrystallized lead and lead alloy positive current collectors and connectors such as straps and lugs for use e.g. in lead acid batteries and electrowinning anodes, having an increased percentage of special grain boundaries in at least part of the microstructure, which have been provided by a process comprising of (i) cold or hot rolling or cold or hot extrusion or (ii) steps of deforming the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided.
    Type: Application
    Filed: November 26, 2001
    Publication date: July 11, 2002
    Inventors: Karl T. Aust, David L. Limoges, Francisco Gonzalez, Gino Palumbo, Klaus Tomantschger, Peter K. Lin
  • Publication number: 20020084008
    Abstract: A surface treatment process for enhancing the resistance to intergranular corrosion and intergranular cracking of components fabricated from austenitic Ni—Fe—Cr based alloys comprising the application of surface deformation to the component, to a depth in the range of 0.01 mm to 0.5 mm, for example by high intensity shot peening below the recrystallization temperature, followed by recrystallization heat treatment, preferably at solutionizing temperatures. The surface deformation and annealing process can be repeated to further optimize the microstructure of the near-surface region. Following the final heat treatment, the process optionally comprises the application of further surface deformation (work) of reduced intensity, yielding a worked depth of between 0.005 mm to 0.01 mm, to impart residual compression in the near surface region to further enhance cracking resistance.
    Type: Application
    Filed: November 27, 2001
    Publication date: July 4, 2002
    Inventors: David L. Limoges, Gino Palumbo, Peter K. Lin
  • Publication number: 20020050311
    Abstract: Recrystallized lead and lead alloy positive electrodes for lead acid batteries having an increased percentage of special grain boundaries in the microstructure, preferably to at least 50%, which have been provided by a process comprising steps of working or straining the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided. The amount of cold work or strain, the recrystallization time and temperature, and the number of repetitions of such steps are selected to ensure that a substantial increase in the population of special grain boundaries is provided in the microstructure, to improve resistance to creep, intergranular corrosion and intergranular cracking of the electrodes during battery service, and result in extended battery life and the opportunity to reduce the size and weight of the battery.
    Type: Application
    Filed: August 24, 2001
    Publication date: May 2, 2002
    Applicant: Integran Technologies Inc.
    Inventor: Gino Palumbo
  • Patent number: 6344097
    Abstract: A surface treatment process for enhancing the intergranular corrosion and intergranular cracking resistance of components fabricated from austenitic Ni—Fe—Cr based alloys comprised of the application of surface cold work to a depth in the range of 0.01 mm to 0.5 mm, for example by high intensity shot peening, followed by recrystallization heat treatment preferably at solutionizing temperatures (>900 C.). The surface cold work and annealing process can be repeated to further optimize the microstructure of the near-surface region. Following the final heat treatment, the process can optionally comprise the application of surface cold work of reduced intensity, yielding a cold worked depth of 0.005 mm to 0.01 mm, in order further enhance resistance to cracking by rendering the near surface in residual compression.
    Type: Grant
    Filed: May 26, 2000
    Date of Patent: February 5, 2002
    Assignee: Integran Technologies Inc.
    Inventors: David L. Limoges, Gino Palumbo, Peter K. Lin
  • Patent number: 6342110
    Abstract: Recrystallized lead and lead alloy positive electrodes for lead acid batteries having an increased percentage of special grain boundaries in the microstructure, preferably to at least 50%, which have been provided by a process comprising steps of working or straining the lead or lead alloy, and subsequently annealing the lead or lead alloy. Either a single cycle of working and annealing can be provided, or a plurality of such cycles can be provided. The amount of cold work or strain, the recrystallization time and temperature, and the number of repetitions of such steps are selected to ensure that a substantial increase in the population of special grain boundaries is provided in the microstructure, to improve resistance to creep, intergranular corrosion and intergranular cracking of the electrodes during battery service, and result in extended battery life and the opportunity to reduce the size and weight of the battery.
    Type: Grant
    Filed: October 6, 1999
    Date of Patent: January 29, 2002
    Assignee: Integran Technologies Inc.
    Inventor: Gino Palumbo
  • Patent number: 6129795
    Abstract: A method is provided for improving the microstructure of nickel and iron-based precipitation strengthened superalloys used in high temperature applications by increasing the frequency of "special", low-.SIGMA. CSL grain boundaries to levels in excess of 50%. Processing entails applying specific thermomechanical processing sequences to precipitation hardenable alloys comprising a series of cold deformation and recrystallization-annealing steps performed within specific limits of deformation, temperature, and annealing time. Materials produced by this process exhibit significantly improved resistance to high temperature degradation (eg. creep, hot corrosion, etc.), enhanced weldability, and high cycle fatigue resistance.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: October 10, 2000
    Assignee: Integran Technologies Inc.
    Inventors: Edward M. Lehockey, Gino Palumbo, Peter Keng-Yu Lin, David L. Limoges
  • Patent number: 6086691
    Abstract: Lead and lead-alloy anodes for electrowinning metals such as zinc, copper, lead, tin, nickel and manganese from sulfuric acid solutions, whereby the electrodes are processed by a repetitive sequence of cold deformation and recrystallization heat treatment, within specified limits of deformation, temperature and annealing time, to achieve an improved microstructure consisting of a high frequency of special low .SIGMA. CSL grain boundaries (i.e.>50%). The resultant electrodes possess significantly improved resistance to intergranular corrosion, and yield (1) extended service life, (2) the potential for reduction in electrode thickness with a commensurate increase in the number of electrodes per electrowinning cell, and (3) the opportunity to extract higher purity metal product.
    Type: Grant
    Filed: August 3, 1998
    Date of Patent: July 11, 2000
    Inventors: Edward M. Lehockey, Gino Palumbo, Peter Keng-Yu Lin, David L. Limoges
  • Patent number: 5817193
    Abstract: In the fabrication of components from a face centered cubic alloy, wherein the alloy is cold worked and annealed, the cold working is carried out in a number of separate steps, each step being followed by an annealing step. The resultant product has a grain size not exceeding 30 microns, a "special" grain boundary fraction not less than 60%, and major crystallographic texture intensities all being less than twice that of random values. The product has a greatly enhanced resistance to intergranular degradation and stress corrosion cracking, and possesses highly isotropic bulk properties.
    Type: Grant
    Filed: January 17, 1997
    Date of Patent: October 6, 1998
    Inventor: Gino Palumbo
  • Patent number: 5702543
    Abstract: In the fabrication of components from a face centred cubic alloy, wherein the alloy is cold worked and annealed, the cold working is carried out in a number of separate steps, each step being followed by an annealing step. The resultant product has a grain size not exceeding 30 microns, a "special" grain boundary fraction not less than 60%, and major crystallographic texture intensities all being less than twice that of random values. The product has a greatly enhanced resistance to intergranular degradation and stress corrosion cracking, and possesses highly isotropic bulk properties.
    Type: Grant
    Filed: December 16, 1993
    Date of Patent: December 30, 1997
    Inventor: Gino Palumbo
  • Patent number: 5538615
    Abstract: The invention is a metal tube such as a heat exchanger tube which has been treated by in situ electrodeposition to repair one or more degraded sections. The repaired metal tube section has an electroformed structural layer which has an ultrafine grain microstructure of sufficient thickness to restore the degraded section at least to its original mechanical specifications.
    Type: Grant
    Filed: January 9, 1995
    Date of Patent: July 23, 1996
    Assignee: Ontario Hydro
    Inventors: Gino Palumbo, Philip C. Lichtenberger, Francisco Gonzalez, Alexander M. Brennenstuhl