Patents by Inventor Giorgio Carluccio

Giorgio Carluccio has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240106105
    Abstract: In accordance with a first aspect of the present disclosure, an antenna unit is provided, comprising: an integrated circuit package containing an integrated circuit die and an antenna structure coupled to the integrated circuit die; a dielectric layer separated from the integrated circuit package, wherein the dielectric layer is placed at a predefined distance above an upper surface of the integrated circuit package. In accordance with a second aspect of the present disclosure, a corresponding method of producing an antenna unit is conceived.
    Type: Application
    Filed: September 19, 2023
    Publication date: March 28, 2024
    Inventors: Waqas Hassan Syed, Ralph Matthijs van Schelven, Giorgio Carluccio, Pieter Lok, Antonius Johannes Matheus de Graauw, Konstantinos Doris, Daniele Cavallo, Andrea Neto
  • Patent number: 11837560
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming an assembly including placing a semiconductor die and a launcher structure on a carrier substrate, encapsulating at least a portion of the semiconductor die and the launcher structure, and applying a redistribution layer on a surface of the semiconductor die and a surface of the launcher structure to connect a bond pad of the semiconductor die with an antenna launcher of the launcher structure. The assembly is attached to a substrate and a waveguide overlapping the assembly is attached to the substrate. The waveguide structure is physically decoupled from the assembly.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: December 5, 2023
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Giorgio Carluccio, Maristella Spella, Scott M. Hayes
  • Patent number: 11777204
    Abstract: A package includes an integrated circuit, IC, die having circuitry configured to generate signalling for transmission to a waveguide and/or receive signalling from a waveguide via a launcher. The die is coupled to an interconnect layer extending out from a footprint of the die. The launcher is formed in a launcher-substrate, separate from the die. The launcher is coupled to the die to pass the signalling therebetween by a connection in the interconnect layer. The launcher includes a launcher element mounted in a first plane within the launcher-substrate and a waveguide-cavity including a ground plane arranged opposed to and spaced from the first plane. The waveguide-cavity is further defined by at least one side wall extending from the ground plane towards the first plane. The die and launcher are at least partially surrounded by mould material of the package.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: October 3, 2023
    Assignee: NXP B.V.
    Inventors: Giorgio Carluccio, Michael B. Vincent, Maristella Spella, Antonius Johannes Matheus de Graauw, Harshitha Thippur Shivamurthy
  • Patent number: 11664567
    Abstract: A method of manufacturing a device is provided. The method includes forming a first cavity in a first substrate with the first cavity having a first depth. A second cavity is formed in a second substrate with the second cavity having a second depth. The first cavity and the second cavity are aligned with each other. The first substrate is affixed to the second substrate to form a waveguide substrate having a hollow waveguide with a first dimension substantially equal to the first depth plus the second depth. A conductive layer is formed on the sidewalls of the hollow waveguide. The waveguide substrate is placed over a packaged semiconductor device, the hollow waveguide aligned with a launcher of the packaged semiconductor device.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: May 30, 2023
    Assignee: NXP B.V.
    Inventors: Adrianus Buijsman, Abdellatif Zanati, Giorgio Carluccio
  • Publication number: 20230127033
    Abstract: A method of forming a semiconductor device is provided. The method includes providing a radiating element structure and a semiconductor die. The radiating element structure includes a non-conductive substrate, a radiating element formed at a top side of the non-conductive substrate, and a conductive ring formed at the top side of the non-conductive substrate substantially surrounding the radiating element. The semiconductor die is interconnected with the radiating element by way of a conductive trace. An encapsulant encapsulates at least a portion of the radiating element structure. A top surface of the conductive ring exposed at a top surface of the encapsulant. A waveguide interface material is applied on at least a portion of the top surface of the encapsulant.
    Type: Application
    Filed: October 25, 2021
    Publication date: April 27, 2023
    Inventors: Michael B. Vincent, Giorgio Carluccio
  • Patent number: 11631625
    Abstract: A mechanism is provided to remove heat from an integrated circuit (IC) device die by directing heat through a waveguide to a heat sink. The waveguide is mounted on top of a package containing the IC device die. The waveguide is thermally coupled to the IC device die. The waveguide transports the heat to a heat sink coupled to the waveguide and located adjacent to the package on top of a printed circuit board on which the package is mounted. Embodiments provide both thermal dissipation of the generated heat while at the same time maintaining good radio frequency performance of the waveguide.
    Type: Grant
    Filed: August 17, 2022
    Date of Patent: April 18, 2023
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Antonius Johannes Matheus de Graauw, Giorgio Carluccio, Waqas Hassan Syed, Maristella Spella
  • Patent number: 11557544
    Abstract: A semiconductor device is provided. The device includes a semiconductor die and a launcher structure attached to a package substrate. The launcher structure includes a launcher substrate, a launcher portion formed from a conductive layer at a major surface of the launcher substrate, and a translation pad formed from the conductive layer at the major surface. The translation pad is separate from the launcher portion. A translation feature is formed on the translation pad. The translation feature is configured for alignment of a waveguide structure.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: January 17, 2023
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Giorgio Carluccio, Scott M. Hayes
  • Publication number: 20220392821
    Abstract: A mechanism is provided to remove heat from an integrated circuit (IC) device die by directing heat through a waveguide to a heat sink. The waveguide is mounted on top of a package containing the IC device die. The waveguide is thermally coupled to the IC device die. The waveguide transports the heat to a heat sink coupled to the waveguide and located adjacent to the package on top of a printed circuit board on which the package is mounted. Embodiments provide both thermal dissipation of the generated heat while at the same time maintaining good radio frequency performance of the waveguide.
    Type: Application
    Filed: August 17, 2022
    Publication date: December 8, 2022
    Applicant: NXP USA, Inc.
    Inventors: Michael B. Vincent, Antonius Johannes Matheus de Graauw, Giorgio Carluccio, Waqas Hassan Syed, Maristella Spella
  • Patent number: 11456227
    Abstract: A mechanism is provided to remove heat from an integrated circuit (IC) device die by directing heat through a waveguide to a heat sink. The waveguide is mounted on top of a package containing the IC device die. The waveguide is thermally coupled to the IC device die. The waveguide transports the heat to a heat sink coupled to the waveguide and located adjacent to the package on top of a printed circuit board on which the package is mounted. Embodiments provide both thermal dissipation of the generated heat while at the same time maintaining good radio frequency performance of the waveguide.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 27, 2022
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Antonius Johannes Matheus de Graauw, Giorgio Carluccio, Waqas Hassan Syed, Maristella Spella
  • Patent number: 11415626
    Abstract: A method of testing a semiconductor device. An apparatus comprising a semiconductor device and a test apparatus. The semiconductor device includes an integrated circuit and a plurality of external radiating elements at a surface of the device, the radiating elements include transmit elements and receive elements. The test apparatus includes a surface for placing against the surface of the device. The test apparatus also includes at least one waveguide, which extends through the test apparatus for routing electromagnetic radiation transmitted by one of the transmit elements of the device to one of the receive elements of the device. Each waveguide comprises a plurality of waveguide openings for coupling electromagnetically to corresponding radiating elements of the plurality of radiating elements located at the surface of the device. A spacing between the waveguide openings of each waveguide is larger than, or smaller than a spacing between the corresponding radiating elements.
    Type: Grant
    Filed: December 11, 2020
    Date of Patent: August 16, 2022
    Assignee: NXP B.V.
    Inventors: Jan-Peter Schat, Abdellatif Zanati, Henrik Asendorf, Maristella Spella, Waqas Hassan Syed, Giorgio Carluccio, Antonius Johannes Matheus de Graauw
  • Publication number: 20220231408
    Abstract: A package comprising, an integrated circuit, IC, die comprising circuitry configured to generate signalling for transmission to a waveguide and/or receive signalling from a waveguide via a launcher, the die coupled to an interconnect layer extending out from a footprint of the die; and the launcher is formed in a launcher-substrate, separate from the die, the launcher coupled to the die to pass said signalling therebetween by a connection in said interconnect layer, wherein said launcher comprises a launcher element mounted in a first plane within the launcher-substrate and a waveguide-cavity comprising a ground plane arranged opposed to and spaced from the first plane, the waveguide-cavity further defined by at least one side wall extending from the ground plane towards the first plane; and wherein said die and said launcher are at least partially surrounded by mould material of said package.
    Type: Application
    Filed: November 2, 2021
    Publication date: July 21, 2022
    Inventors: Giorgio Carluccio, Michael B. Vincent, Maristella Spella, Antonius Johannes Matheus de Graauw, Harshitha Thippur Shivamurthy
  • Publication number: 20220173490
    Abstract: A method of manufacturing a device is provided. The method includes forming a first cavity in a first substrate with the first cavity having a first depth. A second cavity is formed in a second substrate with the second cavity having a second depth. The first cavity and the second cavity are aligned with each other. The first substrate is affixed to the second substrate to form a waveguide substrate having a hollow waveguide with a first dimension substantially equal to the first depth plus the second depth. A conductive layer is formed on the sidewalls of the hollow waveguide. The waveguide substrate is placed over a packaged semiconductor device, the hollow waveguide aligned with a launcher of the packaged semiconductor device.
    Type: Application
    Filed: November 30, 2020
    Publication date: June 2, 2022
    Inventors: Adrianus Buijsman, Abdellatif Zanati, Giorgio Carluccio
  • Patent number: 11276654
    Abstract: A mechanism is provided to remove heat from an integrated circuit (IC) device die by directing heat through a waveguide to a heat sink. Embodiments provide the waveguide mounted on top of a package containing the IC device die. The waveguide is thermally coupled to the IC device die. The waveguide transports the heat to a heat sink coupled to the waveguide and located adjacent to the package on top of a printed circuit board on which the package is mounted. Embodiments provide both thermal dissipation of the generated heat while at the same time maintaining good radio frequency (RF) performance of the waveguide.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: March 15, 2022
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Antonius Johannes Matheus de Graauw, Giorgio Carluccio, Waqas Hassan Syed, Maristella Spella
  • Publication number: 20220068828
    Abstract: A semiconductor device is provided. The device includes a semiconductor die and a launcher structure attached to a package substrate. The launcher structure includes a launcher substrate, a launcher portion formed from a conductive layer at a major surface of the launcher substrate, and a translation pad formed from the conductive layer at the major surface. The translation pad is separate from the launcher portion. A translation feature is formed on the translation pad. The translation feature is configured for alignment of a waveguide structure.
    Type: Application
    Filed: August 27, 2020
    Publication date: March 3, 2022
    Inventors: Michael B. Vincent, Giorgio Carluccio, Scott M. Hayes
  • Publication number: 20210391285
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming an assembly including placing a semiconductor die and a launcher structure on a carrier substrate, encapsulating at least a portion of the semiconductor die and the launcher structure, and applying a redistribution layer on a surface of the semiconductor die and a surface of the launcher structure to connect a bond pad of the semiconductor die with an antenna launcher of the launcher structure. The assembly is attached to a substrate and a waveguide overlapping the assembly is attached to the substrate. The waveguide structure is physically decoupled from the assembly.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Michael B. Vincent, Giorgio Carluccio, Maristella Spella, Scott M. Hayes
  • Patent number: 11133273
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming an assembly including placing a semiconductor die and a launcher structure on a carrier substrate, encapsulating at least a portion of the semiconductor die and the launcher structure, and applying a redistribution layer on a surface of the semiconductor die and a surface of the launcher structure to connect a bond pad of the semiconductor die with an antenna launcher of the launcher structure. The assembly is attached to a substrate and a waveguide overlapping the assembly is attached to the substrate. The waveguide structure is physically decoupled from the assembly.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: September 28, 2021
    Assignee: NXP USA, INC.
    Inventors: Michael B. Vincent, Giorgio Carluccio, Maristella Spella, Scott M. Hayes
  • Publication number: 20210239754
    Abstract: A method of testing a semiconductor device. An apparatus comprising a semiconductor device and a test apparatus. The semiconductor device includes an integrated circuit and a plurality of external radiating elements at a surface of the device, the radiating elements include transmit elements and receive elements. The test apparatus includes a surface for placing against the surface of the device. The test apparatus also includes at least one waveguide, which extends through the test apparatus for routing electromagnetic radiation transmitted by one of the transmit elements of the device to one of the receive elements of the device. Each waveguide comprises a plurality of waveguide openings for coupling electromagnetically to corresponding radiating elements of the plurality of radiating elements located at the surface of the device. A spacing between the waveguide openings of each waveguide is larger than, or smaller than a spacing between the corresponding radiating elements.
    Type: Application
    Filed: December 11, 2020
    Publication date: August 5, 2021
    Inventors: Jan-Peter Schat, Abdellatif Zanati, Henrik Asendorf, Maristella Spella, Waqas Hassan Syed, Giorgio Carluccio, Antonius Johannes Matheus de Graauw
  • Publication number: 20210183796
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes forming an assembly including placing a semiconductor die and a launcher structure on a carrier substrate, encapsulating at least a portion of the semiconductor die and the launcher structure, and applying a redistribution layer on a surface of the semiconductor die and a surface of the launcher structure to connect a bond pad of the semiconductor die with an antenna launcher of the launcher structure. The assembly is attached to a substrate and a waveguide overlapping the assembly is attached to the substrate. The waveguide structure is physically decoupled from the assembly.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 17, 2021
    Inventors: MICHAEL B. VINCENT, Giorgio Carluccio, Maristella Spella, Scott M. Hayes
  • Publication number: 20210183725
    Abstract: A mechanism is provided to remove heat from an integrated circuit (IC) device die by directing heat through a waveguide to a heat sink. The waveguide is mounted on top of a package containing the IC device die. The waveguide is thermally coupled to the IC device die. The waveguide transports the heat to a heat sink coupled to the waveguide and located adjacent to the package on top of a printed circuit board on which the package is mounted. Embodiments provide both thermal dissipation of the generated heat while at the same time maintaining good radio frequency performance of the waveguide.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 17, 2021
    Applicant: NXP USA, Inc.
    Inventors: Michael B. Vincent, Antonius Johannes Matheus de Graauw, Giorgio Carluccio, Waqas Hassan Syed, Maristella Spella
  • Publication number: 20210183797
    Abstract: A mechanism is provided to remove heat from an integrated circuit (IC) device die by directing heat through a waveguide to a heat sink. Embodiments provide the waveguide mounted on top of a package containing the IC device die. The waveguide is thermally coupled to the IC device die. The waveguide transports the heat to a heat sink coupled to the waveguide and located adjacent to the package on top of a printed circuit board on which the package is mounted. Embodiments provide both thermal dissipation of the generated heat while at the same time maintaining good radio frequency (RF) performance of the waveguide.
    Type: Application
    Filed: December 17, 2019
    Publication date: June 17, 2021
    Applicant: NXP USA, Inc.
    Inventors: Michael B. Vincent, Antonius Johannes Matheus de Graauw, Giorgio Carluccio, Waqas Hassan Syed, Maristella Spella