Patents by Inventor Giri Joshi

Giri Joshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220209090
    Abstract: Thermoelectric devices have an electrically conductive connector for connecting thermoelectric modules. The electrically conductive connector is a compliant mechanism having a first connecting region and a second connecting region that are rigid bodies and an elastically deformable region that is a flexible member positioned between the first and second connecting regions. The electrically conductive compliant mechanism connector enables facile manufacture and assembly of thermoelectric devices of various sizes and shapes that are conformable to irregularly shaped objects and body parts.
    Type: Application
    Filed: December 23, 2021
    Publication date: June 30, 2022
    Applicant: Nanohmics, Inc.
    Inventors: Steve M. Savoy, Giri Joshi, Michael McAleer, Rey Guzman, Scott Smith, Robert Pearsall, Joshua C. Ruedin
  • Patent number: 11152556
    Abstract: The invention relates to the field of thermoelectric compositions and devices. Thermoelectric compositions comprise thermoelectric material in a flexible membrane that comprises structural material and voids. Thermoelectric subassemblies comprise thermoelectric material and electrical contact material along and on and surrounding structural material of the flexible membrane. Thermoelectric subassemblies can comprise thermoelectric elements positioned end-to-end in a flexible membrane that can be bent and positioned in a housing that can be adapted to accommodate various types of thermoelectric devices. Methods for making and using thermoelectric compositions, subassemblies, and devices are described.
    Type: Grant
    Filed: July 29, 2018
    Date of Patent: October 19, 2021
    Assignee: Nanohmics, Inc.
    Inventors: Steve M Savoy, Giri Joshi, Joshua C Ruedin, Michael McAleer
  • Publication number: 20190035997
    Abstract: The invention relates to the field of thermoelectric compositions and devices. Thermoelectric compositions comprise thermoelectric material in a flexible membrane that comprises structural material and voids. Thermoelectric subassemblies comprise thermoelectric material and electrical contact material along and on and surrounding structural material of the flexible membrane. Thermoelectric subassemblies can comprise thermoelectric elements positioned end-to-end in a flexible membrane that can be bent and positioned in a housing that can be adapted to accommodate various types of thermoelectric devices. Methods for making and using thermoelectric compositions, subassemblies, and devices are described.
    Type: Application
    Filed: July 29, 2018
    Publication date: January 31, 2019
    Inventors: Steve M Savoy, Giri Joshi, Joshua C Ruedin, Michael McAleer
  • Patent number: 10008653
    Abstract: A thermoelectric half-Heusler material comprising niobium (Nb), iron (Fe) and antimony (Sb) wherein the material comprises grains having a mean grain size less than one micron. A method of making a nanocomposite half-Heusler thermoelectric material includes melting constituent elements of the thermoelectric material to form an alloy of the thermoelectric material, comminuting (e.g., ball milling) the alloy of the thermoelectric material into nanometer scale mean size particles, and consolidating the nanometer size particles to form the half-Heusler thermoelectric material comprising at least niobium (Nb), iron (Fe) and antimony (Sb) and having grains with a mean grain size less than one micron.
    Type: Grant
    Filed: March 24, 2015
    Date of Patent: June 26, 2018
    Assignees: UNIVERSITY OF HOUSTON SYSTEM, U.S. DEPARTMENT OF ENERGY
    Inventors: Giri Joshi, Jian Yang, Michael Engber, Tej Pantha, Martin Cleary, Zhifeng Ren, Ran He, Boris Kozinsky
  • Publication number: 20150270465
    Abstract: A thermoelectric half-Heusler material comprising niobium (Nb), iron (Fe) and antimony (Sb) wherein the material comprises grains having a mean grain size less than one micron. A method of making a nanocomposite half-Heusler thermoelectric material includes melting constituent elements of the thermoelectric material to form an alloy of the thermoelectric material, comminuting (e.g., ball milling) the alloy of the thermoelectric material into nanometer scale mean size particles, and consolidating the nanometer size particles to form the half-Heusler thermoelectric material comprising at least niobium (Nb), iron (Fe) and antimony (Sb) and having grains with a mean grain size less than one micron.
    Type: Application
    Filed: March 24, 2015
    Publication date: September 24, 2015
    Inventors: Giri Joshi, Jian Yang, Michael Engber, Tej Pantha, Martin Cleary, Zhifeng Ren, Ran He, Boris Kozinsky
  • Patent number: 9048004
    Abstract: Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: June 2, 2015
    Inventors: Zhifeng Ren, Xiao Yan, Giri Joshi, Shuo Chen, Gang Chen, Bed Poudel, James Christopher Caylor
  • Publication number: 20140102498
    Abstract: Methods of fabricating a thermoelectric element with reduced yield loss include forming a solid body of thermoelectric material having first dimension of 150 mm or more and thickness dimension of 5 mm or less, and dicing the body into a plurality of thermoelectric legs, without cutting along the thickness dimension of the body. Further methods include providing a metal material over a surface of a thermoelectric material, and hot pressing the metal material and the thermoelectric material to form a solid body having a contact metal layer and a thermoelectric material layer.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 17, 2014
    Applicant: GMZ Energy, Inc.
    Inventors: Bed Poudel, Giri Joshi, Jian Yang, Tej Panta, James Christopher Caylor, Jonathan D'Angelo, Zhifeng Ren
  • Publication number: 20120326097
    Abstract: Thermoelectric materials and methods of making thermoelectric materials having a nanometer mean grain size less than 1 micron. The method includes combining and arc melting constituent elements of the thermoelectric material to form a liquid alloy of the thermoelectric material and casting the liquid alloy of the thermoelectric material to form a solid casting of the thermoelectric material. The method also includes ball milling the solid casting of the thermoelectric material into nanometer mean size particles and sintering the nanometer size particles to form the thermoelectric material having nanometer scale mean grain size.
    Type: Application
    Filed: December 19, 2011
    Publication date: December 27, 2012
    Applicants: Trustees of Boston College, GMZ Energy, Inc.
    Inventors: Zhifeng Ren, Xiao Yan, Giri Joshi, Gang Chen, Bed Poudel, James Christopher Caylor